Question
Question: If $I_n = \int_0^\infty e^{-x} (sinx)^n dx (n>1)$, then the value of $\frac{101 I_{10}}{I_8}$ is equ...
If In=∫0∞e−x(sinx)ndx(n>1), then the value of I8101I10 is equal to ______.

90
Solution
Let In=∫0∞e−x(sinx)ndx for n>1. We want to find the value of I8101I10.
We use integration by parts to find a reduction formula for In. Let u=(sinx)n and dv=e−xdx. Then du=n(sinx)n−1cosxdx and v=−e−x. In=[−e−x(sinx)n]0∞−∫0∞(−e−x)n(sinx)n−1cosxdx. The boundary term is limx→∞(−e−x(sinx)n)−(−e−0(sin0)n). Since ∣sinx∣≤1, ∣e−x(sinx)n∣≤e−x, and limx→∞e−x=0, the term at infinity is 0 by the Squeeze Theorem. At x=0, (sin0)n=0 for n>1. So the boundary term is 0−0=0. In=n∫0∞e−x(sinx)n−1cosxdx.
Let's apply integration by parts again to the new integral. Let Jn=∫0∞e−x(sinx)ncosxdx. So In=nJn−1. Consider Jn−1=∫0∞e−x(sinx)n−1cosxdx. Let u=(sinx)n−1cosx and dv=e−xdx. Then du=[(n−1)(sinx)n−2cos2x−(sinx)n−1sinx]dx=[(n−1)(sinx)n−2(1−sin2x)−(sinx)n]dx=[(n−1)(sinx)n−2−(n−1)(sinx)n−(sinx)n]dx=[(n−1)(sinx)n−2−n(sinx)n]dx. And v=−e−x. Jn−1=[−e−x(sinx)n−1cosx]0∞−∫0∞(−e−x)[(n−1)(sinx)n−2−n(sinx)n]dx. The boundary term is limx→∞(−e−x(sinx)n−1cosx)−(−e−0(sin0)n−1cos0). Similar to the previous boundary term, the limit at infinity is 0. At x=0, (sin0)n−1=0 for n−1>0 (i.e., n>1), so the term at x=0 is 0. The boundary term is 0. Jn−1=∫0∞e−x[(n−1)(sinx)n−2−n(sinx)n]dx. Jn−1=(n−1)∫0∞e−x(sinx)n−2dx−n∫0∞e−x(sinx)ndx. Jn−1=(n−1)In−2−nIn.
Substitute Jn−1=nIn: nIn=(n−1)In−2−nIn. Multiply by n: In=n(n−1)In−2−n2In. In+n2In=n(n−1)In−2. (1+n2)In=n(n−1)In−2. In=n2+1n(n−1)In−2. This is the reduction formula for In.
We need to find the value of I8101I10. Using the reduction formula with n=10: I10=102+110(10−1)I10−2=100+110⋅9I8=10190I8.
Now, we can find the ratio I8I10: I8I10=10190.
Finally, we calculate the required value: I8101I10=101×(I8I10)=101×(10190)=90.
The final answer is 90.