Solveeit Logo

Question

Question: If $I_n = \int_0^\infty e^{-x} (sinx)^n dx (n>1)$, then the value of $\frac{101 I_{10}}{I_8}$ is equ...

If In=0ex(sinx)ndx(n>1)I_n = \int_0^\infty e^{-x} (sinx)^n dx (n>1), then the value of 101I10I8\frac{101 I_{10}}{I_8} is equal to ______.

Answer

90

Explanation

Solution

Let In=0ex(sinx)ndxI_n = \int_0^\infty e^{-x} (\sin x)^n dx for n>1n>1. We want to find the value of 101I10I8\frac{101 I_{10}}{I_8}.

We use integration by parts to find a reduction formula for InI_n. Let u=(sinx)nu = (\sin x)^n and dv=exdxdv = e^{-x} dx. Then du=n(sinx)n1cosxdxdu = n(\sin x)^{n-1} \cos x dx and v=exv = -e^{-x}. In=[ex(sinx)n]00(ex)n(sinx)n1cosxdxI_n = \left[ -e^{-x} (\sin x)^n \right]_0^\infty - \int_0^\infty (-e^{-x}) n(\sin x)^{n-1} \cos x dx. The boundary term is limx(ex(sinx)n)(e0(sin0)n)\lim_{x \to \infty} (-e^{-x} (\sin x)^n) - (-e^{-0} (\sin 0)^n). Since sinx1|\sin x| \le 1, ex(sinx)nex|e^{-x} (\sin x)^n| \le e^{-x}, and limxex=0\lim_{x \to \infty} e^{-x} = 0, the term at infinity is 0 by the Squeeze Theorem. At x=0x=0, (sin0)n=0(\sin 0)^n = 0 for n>1n>1. So the boundary term is 00=00 - 0 = 0. In=n0ex(sinx)n1cosxdxI_n = n \int_0^\infty e^{-x} (\sin x)^{n-1} \cos x dx.

Let's apply integration by parts again to the new integral. Let Jn=0ex(sinx)ncosxdxJ_n = \int_0^\infty e^{-x} (\sin x)^n \cos x dx. So In=nJn1I_n = n J_{n-1}. Consider Jn1=0ex(sinx)n1cosxdxJ_{n-1} = \int_0^\infty e^{-x} (\sin x)^{n-1} \cos x dx. Let u=(sinx)n1cosxu = (\sin x)^{n-1} \cos x and dv=exdxdv = e^{-x} dx. Then du=[(n1)(sinx)n2cos2x(sinx)n1sinx]dx=[(n1)(sinx)n2(1sin2x)(sinx)n]dx=[(n1)(sinx)n2(n1)(sinx)n(sinx)n]dx=[(n1)(sinx)n2n(sinx)n]dxdu = [(n-1)(\sin x)^{n-2} \cos^2 x - (\sin x)^{n-1} \sin x] dx = [(n-1)(\sin x)^{n-2} (1-\sin^2 x) - (\sin x)^n] dx = [(n-1)(\sin x)^{n-2} - (n-1)(\sin x)^n - (\sin x)^n] dx = [(n-1)(\sin x)^{n-2} - n(\sin x)^n] dx. And v=exv = -e^{-x}. Jn1=[ex(sinx)n1cosx]00(ex)[(n1)(sinx)n2n(sinx)n]dxJ_{n-1} = \left[ -e^{-x} (\sin x)^{n-1} \cos x \right]_0^\infty - \int_0^\infty (-e^{-x}) [(n-1)(\sin x)^{n-2} - n(\sin x)^n] dx. The boundary term is limx(ex(sinx)n1cosx)(e0(sin0)n1cos0)\lim_{x \to \infty} (-e^{-x} (\sin x)^{n-1} \cos x) - (-e^{-0} (\sin 0)^{n-1} \cos 0). Similar to the previous boundary term, the limit at infinity is 0. At x=0x=0, (sin0)n1=0(\sin 0)^{n-1} = 0 for n1>0n-1 > 0 (i.e., n>1n>1), so the term at x=0x=0 is 0. The boundary term is 0. Jn1=0ex[(n1)(sinx)n2n(sinx)n]dxJ_{n-1} = \int_0^\infty e^{-x} [(n-1)(\sin x)^{n-2} - n(\sin x)^n] dx. Jn1=(n1)0ex(sinx)n2dxn0ex(sinx)ndxJ_{n-1} = (n-1) \int_0^\infty e^{-x} (\sin x)^{n-2} dx - n \int_0^\infty e^{-x} (\sin x)^n dx. Jn1=(n1)In2nInJ_{n-1} = (n-1) I_{n-2} - n I_n.

Substitute Jn1=InnJ_{n-1} = \frac{I_n}{n}: Inn=(n1)In2nIn\frac{I_n}{n} = (n-1) I_{n-2} - n I_n. Multiply by nn: In=n(n1)In2n2InI_n = n(n-1) I_{n-2} - n^2 I_n. In+n2In=n(n1)In2I_n + n^2 I_n = n(n-1) I_{n-2}. (1+n2)In=n(n1)In2(1 + n^2) I_n = n(n-1) I_{n-2}. In=n(n1)n2+1In2I_n = \frac{n(n-1)}{n^2+1} I_{n-2}. This is the reduction formula for InI_n.

We need to find the value of 101I10I8\frac{101 I_{10}}{I_8}. Using the reduction formula with n=10n=10: I10=10(101)102+1I102=109100+1I8=90101I8I_{10} = \frac{10(10-1)}{10^2+1} I_{10-2} = \frac{10 \cdot 9}{100+1} I_8 = \frac{90}{101} I_8.

Now, we can find the ratio I10I8\frac{I_{10}}{I_8}: I10I8=90101\frac{I_{10}}{I_8} = \frac{90}{101}.

Finally, we calculate the required value: 101I10I8=101×(I10I8)=101×(90101)=90\frac{101 I_{10}}{I_8} = 101 \times \left( \frac{I_{10}}{I_8} \right) = 101 \times \left( \frac{90}{101} \right) = 90.

The final answer is 90.