Question
Question: If $I_1 = \int_0^1 (1-(1-x^3)^{\sqrt{2}})^{\sqrt{3}} x^2 dx$ and $I_2 = \int_0^1 (1-(1-x^3)^{\sqrt{2...
If I1=∫01(1−(1−x3)2)3x2dx and I2=∫01(1−(1−x3)2)3+1x2dx, then 10I2I1−223−1+0.2 is equal to
Answer
0.12
Explanation
Solution
Solution:
We are given
I1=∫01(1−(1−x3)2)3x2dx,I2=∫01(1−(1−x3)2)3+1x2dx.Step 1. Change of Variable
Let t=x3. Then,
dt=3x2dx⟹x2dx=3dt,and when x=0,t=0 and x=1,t=1. So,
I1=31∫01(1−(1−t)2)3dt,I2=31∫01(1−(1−t)2)3+1dt.Now let u=1−t so that dt=−du and the limits change: t=0⇒u=1, t=1⇒u=0. Reversing the limits:
I1=31∫01(1−u2)3du,I2=31∫01(1−u2)3+1du.Step 2. Secondary Substitution and Beta Integral
Now set v=u2 so that
u=v21anddu=21v21−1dv.Then,
I1=321∫01(1−v)3v21−1dv, I2=321∫01(1−v)3+1v21−1dv.Recognize these as Beta integrals:
∫01vp−1(1−v)q−1dv=B(p,q)=Γ(p+q)Γ(p)Γ(q).Here for I1: p=21, q=3+1; for I2: p=21, q=3+2.
Thus,
I1=321Γ(21+3+1)Γ(21)Γ(3+1), I2=321Γ(21+3+2)Γ(21)Γ(3+2).Step 3. Compute the Ratio I2I1
I2I1=B(21,3+2)B(21,3+1)=Γ(3+2)Γ(3+1)⋅Γ(21+3+1)Γ(21+3+2).Using the property Γ(z+1)=zΓ(z):
Γ(3+2)=(3+1)Γ(3+1), Γ(21+3+2)=(21+3+1)Γ(21+3+1).Thus,
I2I1=3+11(21+3+1)=1+2(3+1)1.Step 4. Evaluate the Final Expression
We need to compute
E=10I2I1−223−1+0.2.Substitute I2I1=1+2(3+1)1:
E=101+2(3+1)1−223−1+0.2.Notice that
2(3+1)1=22(3+1)2and
223−1.Observe that:
22(3+1)2−223−1=22(3+1)2−(3−1)(3+1).But (3−1)(3+1)=3−1=2. Thus the fraction is
22(3+1)2−2=0.So the expression reduces to:
E=101+0.2=101.2=0.12.Summary:
- Explanation: Change of variables transforms the integrals to Beta functions. Taking the ratio and using the Gamma function property simplifies the ratio to 1+2(3+1)1; the additional terms cancel out, yielding the final answer 0.12.