Solveeit Logo

Question

Mathematics Question on integral

If I(x)=x2(logx)2dxI(x)=\int x^{2}(\log x)^{2} d x and I(1)=0I( 1)=0, then I(x)I(x)

A

x318[8(logx)23logx]+718\frac{x^{3}}{18} \left[ 8\left(\log x\right)^{2} -3\log x\right] + \frac{7}{18}

B

x327[9(logx)2+6logx]227\frac{x^{3}}{27} \left[9\left(\log x\right)^{2} +6 \log x\right] - \frac{2}{27}

C

x327[9(logx)26logx+2]227\frac{x^{3}}{27} \left[9\left(\log x\right)^{2} - 6 \log x+2\right]- \frac{2}{27}

D

x327[9(logx)26logx+2]227\frac{x^{3}}{27} \left[9 \left(\log x\right)^{2} -6 \log x +2 \right] - \frac{2}{27}

Answer

x327[9(logx)26logx+2]227\frac{x^{3}}{27} \left[9\left(\log x\right)^{2} - 6 \log x+2\right]- \frac{2}{27}

Explanation

Solution

Given integral I(x)=x2(logx)2dx=x33(logx)2x332logxxdxI(x)=\int x^{2}(\log x)^{2} d x= \frac{x^{3}}{3}(\log x)^{2}-\int \frac{x^{3}}{3} \frac{2 \log x}{x} d x [by integration by parts] =x33(logx)223[x33(logx)x33(1x)dx]= \frac{x^{3}}{3}(\log x)^{2}-\frac{2}{3}\left[\frac{x^{3}}{3}(\log x)-\int \frac{x^{3}}{3}\left(\frac{1}{x}\right) d x\right] =x33(logx)223[x33(logx)13x33]+C= \frac{x^{3}}{3}(\log x)^{2}-\frac{2}{3}\left[\frac{x^{3}}{3}(\log x)-\frac{1}{3} \frac{x^{3}}{3}\right]+C =x327[9(logx)26(logx)+2]+C=\frac{x^{3}}{27}\left[9(\log x)^{2}-6(\log x)+2\right]+C I(1)=0\because I(1)=0 227+C=0\therefore \frac{2}{27}+C=0 C=227\Rightarrow C=-\frac{2}{27} I(x)=x327[9(logx)26(logx)+2]227\therefore I(x)=\frac{x^{3}}{27}\left[9(\log x)^{2}-6(\log x)+2\right]-\frac{2}{27}