Question
Mathematics Question on integral
If I(x)=∫x2(logx)2dx and I(1)=0, then I(x)
A
18x3[8(logx)2−3logx]+187
B
27x3[9(logx)2+6logx]−272
C
27x3[9(logx)2−6logx+2]−272
D
27x3[9(logx)2−6logx+2]−272
Answer
27x3[9(logx)2−6logx+2]−272
Explanation
Solution
Given integral I(x)=∫x2(logx)2dx=3x3(logx)2−∫3x3x2logxdx [by integration by parts] =3x3(logx)2−32[3x3(logx)−∫3x3(x1)dx] =3x3(logx)2−32[3x3(logx)−313x3]+C =27x3[9(logx)2−6(logx)+2]+C ∵I(1)=0 ∴272+C=0 ⇒C=−272 ∴I(x)=27x3[9(logx)2−6(logx)+2]−272