Solveeit Logo

Question

Question: If \(i=\sqrt{-1}\), then calculate the value of \(4+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \ri...

If i=1i=\sqrt{-1}, then calculate the value of 4+5(12+i32)334+3(12+i32)3654+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}.
(a) 1i31-i\sqrt{3}
(b) 1+i3-1+i\sqrt{3}
(c) i3i\sqrt{3}
(d) i3-i\sqrt{3}

Explanation

Solution

Hint: Use the fact that w=12+i32w=\dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} is a cube root of unity and thus w3=1{{w}^{3}}=1 . Simplify the given expression, use the laws of exponents which state that ab×ac=ab+c{{a}^{b}}\times {{a}^{c}}={{a}^{b+c}} and (ab)c=abc{{\left( {{a}^{b}} \right)}^{c}}={{a}^{bc}} and calculate the value of the expression.

Complete step-by-step solution -
We have to calculate the value of the expression 4+5(12+i32)334+3(12+i32)3654+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}.
We know that w=12+i32w=\dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} is a cube root of unity. Thus, we have w3=1{{w}^{3}}=1.
So, we can rewrite the expression 4+5(12+i32)334+3(12+i32)3654+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}} as 4+5(12+i32)334+3(12+i32)365=4+5w334+3w3654+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=4+5{{w}^{334}}+3{{w}^{365}}.
We know that the laws of exponents state that ab×ac=ab+c{{a}^{b}}\times {{a}^{c}}={{a}^{b+c}} and (ab)c=abc{{\left( {{a}^{b}} \right)}^{c}}={{a}^{bc}}.
So, we can rewrite w334{{w}^{334}} as w334=w333+1=(w3)111×w{{w}^{334}}={{w}^{333+1}}={{\left( {{w}^{3}} \right)}^{111}}\times w.
Similarly, we can rewrite w365{{w}^{365}} as w365=w363+2=(w3)121×w2{{w}^{365}}={{w}^{363+2}}={{\left( {{w}^{3}} \right)}^{121}}\times {{w}^{2}}.
Substituting these values in the expression 4+5(12+i32)334+3(12+i32)365=4+5w334+3w3654+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=4+5{{w}^{334}}+3{{w}^{365}}, we have 4+5(12+i32)334+3(12+i32)365=4+5w334+3w365=4+5[(w3)111×w]+3[(w3)121×w2]4+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=4+5{{w}^{334}}+3{{w}^{365}}=4+5\left[ {{\left( {{w}^{3}} \right)}^{111}}\times w \right]+3\left[ {{\left( {{w}^{3}} \right)}^{121}}\times {{w}^{2}} \right].
We know that w3=1{{w}^{3}}=1.
Thus, we have 4+5(12+i32)334+3(12+i32)365=4+5w334+3w365=4+5[1111×w]+3[1121×w2]=4+5w+3w24+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=4+5{{w}^{334}}+3{{w}^{365}}=4+5\left[ {{1}^{111}}\times w \right]+3\left[ {{1}^{121}}\times {{w}^{2}} \right]=4+5w+3{{w}^{2}}.
By rearranging the terms of the above equation, we have 4+5(12+i32)334+3(12+i32)365=4+5w+3w2=4+4w+4w2+ww24+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=4+5w+3{{w}^{2}}=4+4w+4{{w}^{2}}+w-{{w}^{2}}.
We know that the roots of the equation x3=1{{x}^{3}}=1 are 1,w,w21,w,{{w}^{2}}.
We also know that if α,β,γ\alpha ,\beta ,\gamma are roots of the cubic equation of the form ax3+bx2+cx+da{{x}^{3}}+b{{x}^{2}}+cx+d, then we have α+β+γ=ba\alpha +\beta +\gamma =\dfrac{-b}{a}, αβ+βγ+γα=ca\alpha \beta +\beta \gamma +\gamma \alpha =\dfrac{c}{a} and αβγ=da\alpha \beta \gamma =\dfrac{-d}{a}.
Thus, we have 1+w+w2=01=01+w+{{w}^{2}}=\dfrac{0}{1}=0.
So, we have 4+5(12+i32)334+3(12+i32)365=4+5w+3w2=4+4w+4w2+ww2=4(1+w+w2)+ww24+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=4+5w+3{{w}^{2}}=4+4w+4{{w}^{2}}+w-{{w}^{2}}=4\left( 1+w+{{w}^{2}} \right)+w-{{w}^{2}} .
Thus, we have 4+5(12+i32)334+3(12+i32)365=4(1+w+w2)+ww2=4(0)+ww2=ww24+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=4\left( 1+w+{{w}^{2}} \right)+w-{{w}^{2}}=4\left( 0 \right)+w-{{w}^{2}}=w-{{w}^{2}}.
We will now calculate the value of w2{{w}^{2}} using the algebraic identity (a+b)2=a2+b2+2ab{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab.
As w=12+i32w=\dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2}, we have w2=(12+i32)2=(12)2+(i32)2+2(12)(i32){{w}^{2}}={{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{2}}={{\left( \dfrac{-1}{2} \right)}^{2}}+{{\left( \dfrac{i\sqrt{3}}{2} \right)}^{2}}+2\left( \dfrac{-1}{2} \right)\left( \dfrac{i\sqrt{3}}{2} \right).
As i=1i=\sqrt{-1}, we have i2=(1)2=1{{i}^{2}}={{\left( \sqrt{-1} \right)}^{2}}=-1.
Thus, we have w2=(12+i32)2=(12)2+(i32)2+2(12)(i32)=14+(1)34i32=134i32=12i32{{w}^{2}}={{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{2}}={{\left( \dfrac{-1}{2} \right)}^{2}}+{{\left( \dfrac{i\sqrt{3}}{2} \right)}^{2}}+2\left( \dfrac{-1}{2} \right)\left( \dfrac{i\sqrt{3}}{2} \right)=\dfrac{1}{4}+\dfrac{\left( -1 \right)3}{4}-\dfrac{i\sqrt{3}}{2}=\dfrac{1-3}{4}-\dfrac{i\sqrt{3}}{2}=\dfrac{-1}{2}-\dfrac{i\sqrt{3}}{2}.
Substituting w=12+i32w=\dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} and w2=12i32{{w}^{2}}=\dfrac{-1}{2}-\dfrac{i\sqrt{3}}{2} in the equation 4+5(12+i32)334+3(12+i32)365=4(1+w+w2)+ww2=4(0)+ww2=ww24+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=4\left( 1+w+{{w}^{2}} \right)+w-{{w}^{2}}=4\left( 0 \right)+w-{{w}^{2}}=w-{{w}^{2}}, we have 4+5(12+i32)334+3(12+i32)365=ww2=12+i32(12i32)=12+i32+12+i32=i34+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=w-{{w}^{2}}=\dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2}-\left( \dfrac{-1}{2}-\dfrac{i\sqrt{3}}{2} \right)=\dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2}+\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2}=i\sqrt{3} .
Hence, the value of the expression 4+5(12+i32)334+3(12+i32)3654+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}} is i3i\sqrt{3}, which is option (c).

Note: We can’t solve this question without using the fact that 1,w,w21,w,{{w}^{2}} are roots of the equation x3=1{{x}^{3}}=1. We also need to use the law of exponents to simplify the powers of the exponents; otherwise, it will be very time consuming to solve this question.