Question
Question: If \[i=\sqrt{-1}\] then \[4+5{{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}-3{{\left[ \...
If i=−1 then 4+5[2−1+i23]334−3[21+i23]365is equal to
(a) 1−i3
(b) −1+i3
(c) 43i
(d) −i3
Solution
To solve this problem, we should know that concept of cube roots of unity. We know that according to cube roots of unity as 1, w=2−1+i23 and w2=2−1−i23which also satisfies w2+w+1=0 and w3=1. We assume the value of 4+5[2−1+i23]334−3[21+i23]365is equal to A. We then substitute w=2−1+i23 and w2=2−1−i23 in A. Now by further simplification, we will get the value of A.
Complete step-by-step answer:
Let us assume the value of 4+5[2−1+i23]334−3[21+i23]365 is equal to A.
We know that according to cube roots of unity. If w=2−1+i23 and w2=2−1−i23, then w2+w+1=0 and w3=1. So, let us substitute w=2−1+i23 and w2=2−1−i23 in A.
⇒A=4+5w334−3(−w2)365.
⇒A=4+5w333.w+3w730.
⇒A=4+5w333.w+3w729.w.
⇒A=4+5(w3)111.w+3(w3)243.w.
We know that w3=1. Now we will substitute this in the value of A.
⇒A=4+5w+3w.
⇒A=4+8w.
We know that w=2−1+i23. Now we will substitute this in the value of A.
⇒A=4+8(2−1+i23).
⇒A=4+(−4+43).
⇒A=43i.
Hence, option C is correct.
So, the correct answer is “Option C”.
Note: Alternatively, we can solve this problem as shown below:
From the above question, it is clear that we have to find the value of 4+5[2−1+i23]334−3[21+i23]365.
First of all, let us find the value of [2−1+i23]334.
We know that cos(π−3π)=2−1 and sin(π−3π)=23.
⇒[2−1+i23]334=[cos(π−3π)+isin(π−3π)]334.
We know that cisθ=cosθ+isinθ.
⇒[2−1+i23]334=[cis(π−3π)]334.
We know that cisnθ=cisnθ.
⇒[2−1+i23]334=[cis(334(π−3π))].
⇒[2−1+i23]334=[cis(334π−3334π)].
We know that cisθ=cosθ+isinθ.
⇒[2−1+i23]334=[cos(334π−3334π)+isin(334π−3334π)].
We know that cos(nπ−θ)=cosθ and sin(nπ−θ)=−sinθ where n is even.
⇒[2−1+i23]334=[cos(3334π)−isin(3334π)].
⇒[2−1+i23]334=[cos(111π+3π)−isin(111π+3π)].
We know that cos(nπ+θ)=−cosθ and sin(nπ+θ)=−sinθ where n is odd.
⇒[2−1+i23]334=[−cos(3π)+isin(3π)].
We know that cos3π=21 and sin3π=23.
⇒[2−1+i23]334=[2−1+i23]........(1).
Now we should find the value of [21+i23]365.
We know that cos(3π)=21 and sin(3π)=23.
⇒[21+i23]365=[cos(3π)+isin(3π)]365.
We know that cisθ=cosθ+isinθ.
⇒[21+i23]365=[cis(3π)]365.
We know that cisnθ=cisnθ.
⇒[21+i23]365=[cis(3365π)].
⇒[21+i23]365=[cis(121π+32π)].
We know that cisθ=cosθ+isinθ.
⇒[21+i23]365=[cos(121π+32π)+isin(121π+32π)].
We know that cos(nπ+θ)=−cosθ and sin(nπ+θ)=−sinθ where n is odd.
⇒[21+i23]365=[−cos(32π)−isin(32π)].
⇒[2−1+i23]365=−[cos(32π)+isin(32π)].
⇒[2−1+i23]365=−[cos(π−3π)+isin(π−3π)].
We know that cos(nπ−θ)=−cosθ and sin(nπ−θ)=sinθ where n is odd.
⇒[21+i23]365=−[−cos(3π)+isin(3π)].
We know that cos3π=21 and sin3π=23.
⇒[21+i23]365=−[−21+i23].
⇒[21+i23]365=[21−i23]......(2).
Let us assume
I=4+5[2−1+i23]334−3[21+i23]365......(3).
Now we will substitute equation (1) and equation (2) in equation (3), then we get
⇒I=4−25+i(253)−23+i(233).
⇒I=4−25−23+i(253+233).
⇒I=0+i(283).
⇒I=43i......(4).
From equation (4), it is clear that the value of 4+5[2−1+i23]334−3[21+i23]365 is equal to 43i.
Hence, Option c is correct.