Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

If i=1 i = \sqrt -1 then 4+5(12+i32)334+3(12+i32)365 4 + 5 \bigg(-\frac{1}{2}+\frac{i\sqrt 3}{2}\bigg)^{334}+3\bigg(-\frac{1}{2}+\frac{i\sqrt 3}{2}\bigg)^{365} is equal to

A

1-i 3\sqrt 3

B

-1 + i 3\sqrt 3

C

i3\sqrt 3

D

-i3\sqrt 3

Answer

i3\sqrt 3

Explanation

Solution

If in a complex number a + ib, the ratio a : b is 1: 3\sqrt 3
then it always convert the complex number in ω\omega
.Since, ω=12+32i\omega =-\frac{1}{2}+\frac{\sqrt 3}{2}i
4+5(12+i32)334+3(12+i32)365\therefore \, 4+5 \bigg(-\frac{1}{2}+\frac{i\sqrt 3}{2}\bigg)^{334}+3\bigg(-\frac{1}{2}+\frac{i\sqrt 3}{2}\bigg)^{365}
=4+5ω334+3ω365=4+5\omega^{334}+3\omega^{365}
=4+5.(ω3)111.ω+3.(ω3)121.ω2=4+5.(\omega^3)^{111}.\omega +3.(\omega^3)^{121}.\omega^2
=4+5ω+3ω2 , [ ω3=1]= 4+5\omega+3\omega^2\ , \ [\because\ \omega^3=1]
=1+3+2ω+3(1+ω+ω2)=1+2ω+3×0=1+3+2\omega+3(1+\omega+\omega^2)=1+2\omega +3 \times 0
[1+ω+ω2=0][\because 1+\omega+\omega^2=0]
=1+(1+3i)=3i=1+(-1+\sqrt 3 i)=\sqrt 3 i

So, the correct answer is (C): i3i\sqrt 3