Solveeit Logo

Question

Question: If \(i = \sqrt{- 1}\), then \(\frac{e^{xi} + e^{- xi}}{2} =\)...

If i=1i = \sqrt{- 1}, then exi+exi2=\frac{e^{xi} + e^{- xi}}{2} =

A

1+x22!+x44!+.....1 + \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + .....\infty

B

1x22!+x44!.....1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - .....\infty

C

x+x33!+x55!+....x + \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + ....\infty

D

i[xx33!+x55!.....]i\left\lbrack x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - .....\infty \right\rbrack

Answer

1x22!+x44!.....1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - .....\infty

Explanation

Solution

We know that loge(n1n)\log_{e}\left( \frac{n - 1}{n} \right)

loge(nn1)\log_{e}\left( \frac{n}{n - 1} \right)

log42log82+log162....\log_{4}2 - \log_{8}2 + \log_{16}2.... ......(i)

and e2e^{2}

loge2\log_{e}2 ......(ii)

Now from (i) and (ii), we have

loge32\log_{e}3 - 2.