Solveeit Logo

Question

Question: If i = \(\sqrt{- 1}\) then 4 + 5\(\left( - \frac{1}{2} + i\frac{\sqrt{3}}{2} \right)^{334}\)–3\(\lef...

If i = 1\sqrt{- 1} then 4 + 5(12+i32)334\left( - \frac{1}{2} + i\frac{\sqrt{3}}{2} \right)^{334}–3(12+i32)365\left( \frac{1}{2} + i\frac{\sqrt{3}}{2} \right)^{365}is equal to–

A

1 – i3\sqrt{3}

B

–1 + i3\sqrt{3}

C

43\sqrt{3}I

D

–i3\sqrt{3}

Answer

43\sqrt{3}I

Explanation

Solution

Sol. As, 4 + 5(12+i32)334\left( - \frac{1}{2} + \frac{i\sqrt{3}}{2} \right)^{334}–3(12+i32)365\left( \frac{1}{2} + \frac{i\sqrt{3}}{2} \right)^{365}

Ž 4 + 5(w)334 – 3 (w2)365

Ž 4 + 5w + 3w

Ž 12\frac{1}{2}{8 – 5 + 5i3\sqrt{3} – 3 + 3i3\sqrt{3}}

Ž 12\frac{1}{2}{8i3\sqrt{3}} = 43\sqrt{3}i

Hence (3) is correct answer.