Solveeit Logo

Question

Question: If \(i = \sqrt{- 1}\), then \(4 + 5\left( - \frac{1}{2} + \frac{i\sqrt{3}}{2} \right)^{334} + 3\left...

If i=1i = \sqrt{- 1}, then 4+5(12+i32)334+3(12+i32)3654 + 5\left( - \frac{1}{2} + \frac{i\sqrt{3}}{2} \right)^{334} + 3\left( - \frac{1}{2} + \frac{i\sqrt{3}}{2} \right)^{365} is

equal to

A

1i31 - i\sqrt{3}

B

1+i3- 1 + i\sqrt{3}

C

i3i\sqrt{3}

D

i3- i\sqrt{3}

Answer

i3i\sqrt{3}

Explanation

Solution

Sol. Given equations 4+5(12+i32)334+3(12+i32)365=4+5ω334+3ω3654 + 5\left( - \frac{1}{2} + i\frac{\sqrt{3}}{2} \right)^{334} + 3\left( - \frac{1}{2} + i\frac{\sqrt{3}}{2} \right)^{365} = 4 + 5\omega^{334} + 3\omega^{365} =4+5ω+3ω2= 4 + 5\omega + 3\omega^{2} =1+2w= 1 + 2w

=1+2(1+i32)= 1 + 2\left( \frac{- 1 + i\sqrt{3}}{2} \right) =i3= i\sqrt{3}