Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

ifIn=ππsinnx(1+πx)sinxdx,n=0,1,2,..............,then\, if \, I_ n = \int^{\pi}_{ -\pi} \frac { \sin \, n \, x }{ ( 1 + \pi ^x ) \sin \, x } dx , \, n = 0 , 1 , 2 , .............., then

A

In=In+2I_ n = I_{ n + 2 }

B

m=110I2m+1=10π\displaystyle \sum^{10}_{ m = 1 } \, I _{ 2 m + 1 } = 10 \pi

C

m=110I2m=10\displaystyle \sum^{10}_{ m = 1 } \, I _{ 2 m } = 10

D

In=In+1I_ n = I_{ n + 1 }

Answer

m=110I2m=10\displaystyle \sum^{10}_{ m = 1 } \, I _{ 2 m } = 10

Explanation

Solution

Given ifIn=ππsinnx(1+πx)sinxdx,...............(1)\, if \, I_ n = \int^{\pi}_{ -\pi} \frac { sin \, n \, x }{ ( 1 + \pi ^x ) \, sin \, x } dx ,...............(1)
Using abf(x)dx=abf(b+ax)dx,weget\int^b_a \, f ( x ) \, dx = \int^b _a \, f ( b + a - x ) \, dx , we \, get
In=πππxsinnx(1+πx)sinxdx................(2)\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, I_n = \int^{\pi}_ {-\pi } \frac { \pi^{x } \, sin \, n x}{ ( 1 + \pi^x ) sin \, x } \, dx ................(2)
On adding Eqs. (i) and (ii), we have
2In=ππsinnxsinxdx=20πsinnxsinxdx\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, 2I_n = \int^{\pi}_ {-\pi } \frac { sin \, n x}{ sin \, x } \, dx = 2 \int^{\pi}_ 0 \frac { sin \, n x}{ sin \, x } \, dx
[f(x)=sinnxsinxisanevenfunction]\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, [ \because f ( x ) = \frac { sin \, n x}{ sin \, x } \, is \, an \, even \, function ]
\Rightarrow \, \, \, \, \, \, \, \, \, In=0πsinnxsimnxdxI_n = \int^\pi _ 0 \frac { sin \, nx }{ simn \, x } \, dx
Now,In+2In=0πsin(n2)xsinnxsinxdxNow , I_{ n + 2 } - I_n = \int^{\pi}_0 \frac { sin ( n - 2 ) \, x - sin \, nx }{ sin \, x } \, dx
=0π2cos(n+1)x.sinxsinxdx\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, = \int^\pi_0 \frac { 2 \, cos ( n + 1 ) \, x . sin \, x }{ sin \, x } \, dx
=20πcos(n+1)xdx=2[sin(n+1)x(n+1)]0π=0\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, = 2 \int^\pi_0 cos ( n + 1 ) \, x \, dx = 2 \bigg [ \frac { sin ( n + 1 ) \, x }{ ( n + 1 ) } \bigg ]^{\pi}_0 = 0
In+2=In...................(3)\therefore \, I_{ n + 2 } = I_n \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, ...................(3)
Since,In=0πsinnxsinxdxSince , \, \, \, \, \, \, \, \, \, \, \, \, \, \, I_n = \int^{\pi}_0 \frac {sin \, nx }{ sin \, x } \, dx
\Rightarrow I1=πandI2=0\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, I_1 = \pi \, and \, I_2 = 0
From E (iii) I1=I3=I5=.................=πI_1 = I_3 = I_5 = .................= \pi
and \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, I2=I4=I6=.................=0I_2 = I_4 = I_6 = .................= 0
\Rightarrow 10I2m+1=10πand10I2m=0\displaystyle \sum^{10} I_{2m + 1 } = 10 \pi \, and \, \displaystyle \sum^{10} I_{2m } = 0
\therefore Correct options are (A), (B), (C).