Question
Mathematics Question on Integrals of Some Particular Functions
ifIn=∫−ππ(1+πx)sinxsinnxdx,n=0,1,2,..............,then
A
In=In+2
B
m=1∑10I2m+1=10π
C
m=1∑10I2m=10
D
In=In+1
Answer
m=1∑10I2m=10
Explanation
Solution
Given ifIn=∫−ππ(1+πx)sinxsinnxdx,...............(1)
Using ∫abf(x)dx=∫abf(b+a−x)dx,weget
In=∫−ππ(1+πx)sinxπxsinnxdx................(2)
On adding Eqs. (i) and (ii), we have
2In=∫−ππsinxsinnxdx=2∫0πsinxsinnxdx
[∵f(x)=sinxsinnxisanevenfunction]
⇒ In=∫0πsimnxsinnxdx
Now,In+2−In=∫0πsinxsin(n−2)x−sinnxdx
=∫0πsinx2cos(n+1)x.sinxdx
=2∫0πcos(n+1)xdx=2[(n+1)sin(n+1)x]0π=0
∴In+2=In...................(3)
Since,In=∫0πsinxsinnxdx
⇒ I1=πandI2=0
From E (iii) I1=I3=I5=.................=π
and I2=I4=I6=.................=0
⇒ ∑10I2m+1=10πand∑10I2m=0
∴ Correct options are (A), (B), (C).