Solveeit Logo

Question

Question: If \[{I_n} = \int\limits_0^\pi {{e^x}{{(\sin x)}^n}dx} \] then \[\dfrac{{{I_3}}}{{{I_1}}}\] is equal...

If In=0πex(sinx)ndx{I_n} = \int\limits_0^\pi {{e^x}{{(\sin x)}^n}dx} then I3I1\dfrac{{{I_3}}}{{{I_1}}} is equal to
(A)35\dfrac{3}{5}
(B)15\dfrac{1}{5}
(C)11
(D)25\dfrac{2}{5}

Explanation

Solution

In this question, we have to choose the correct option for the particular required relation. They give the general relation, by using that we can change its general relation to the required general relation. Then we substituting the particular term to find the value to choose from the option.
In calculus, and more generally in mathematical analysis, integration by parts or partial integration is a process that finds the integral of a product of functions in terms of the integral of the product of their derivative and anti-derivative.

Formula used: If uu and vv both are derivable functions,udvdxdx=uvvdudxdx\int {u\dfrac{{dv}}{{dx}}dx = uv - \int {v\dfrac{{du}}{{dx}}} } dx
Differentiation formula with respect to xx
d(xn)dx=nxn1\dfrac{{d({x^n})}}{{dx}} = n{x^{n - 1}}
d(sinx)dx=cosx\dfrac{{d\left( {\sin x} \right)}}{{dx}} = \cos x
d(cosx)dx=sinx\dfrac{{d\left( {\cos x} \right)}}{{dx}} = - \sin x
dydx=exy=exdx\dfrac{{dy}}{{dx}} = {e^x} \Rightarrow y = \int {{e^x}dx}
Trigonometric relations and values,
sinπ=0\sin \pi = 0 and sin0=0\sin 0 = 0
sinn1π=0{\sin ^{n - 1}}\pi = 0 and sinn10=0{\sin ^{n - 1}}0 = 0
cos2x=1sin2x{\cos ^2}x = 1 - {\sin ^2}x

Complete step-by-step answer:
It is given that, In=0πex(sinx)ndx{I_n} = \int\limits_0^\pi {{e^x}{{(\sin x)}^n}dx}
We need to find out the value of I3I1\dfrac{{{I_3}}}{{{I_1}}}.
We have,In=0πex(sinx)ndx{I_n} = \int\limits_0^\pi {{e^x}{{(\sin x)}^n}dx}
Applying by parts integration we get,
By using udvdxdx=uvvdudxdx\int {u\dfrac{{dv}}{{dx}}dx = uv - \int {v\dfrac{{du}}{{dx}}} } dx equating the R.H.S of this equation to given relation we get,
In=0πex(sinx)ndx=udvdxdx{I_n} = \int\limits_0^\pi {{e^x}{{(\sin x)}^n}dx} = \int {u\dfrac{{dv}}{{dx}}dx} from this,
u=(sinx)nu = {(\sin x)^n} and dudx=d(sinx)ndx\dfrac{{du}}{{dx}} = \dfrac{{d{{(\sin x)}^n}}}{{dx}},
dvdx=ex\dfrac{{dv}}{{dx}} = {e^x} and v=0πexdxv = \int\limits_0^\pi {{e^x}dx}
Substituting the values of uu, dudx\dfrac{{du}}{{dx}}, vv and dvdx\dfrac{{dv}}{{dx}} in udvdxdx=uvvdudxdx\int {u\dfrac{{dv}}{{dx}}dx = uv - \int {v\dfrac{{du}}{{dx}}} } dx we get,
In=(sinx)n0πexdx0πd(sinx)ndxexdx\Rightarrow {I_n} = {(\sin x)^n}\int\limits_0^\pi {{e^x}dx} - \int\limits_0^\pi {\dfrac{{d{{(\sin x)}^n}}}{{dx}}} {e^x}dx
Let us consider the term,
d(sinx)ndx\dfrac{{d{{(\sin x)}^n}}}{{dx}} Differentiating with respect to xx,
Differentiate using the differentiating formula,
d(xn)dx=nxn1\dfrac{{d({x^n})}}{{dx}} = n{x^{n - 1}}
d(sinx)dx=cosx\dfrac{{d\left( {\sin x} \right)}}{{dx}} = \cos x
d(cosx)dx=sinx\dfrac{{d\left( {\cos x} \right)}}{{dx}} = - \sin x
d(sinx)ndx=nsinn1x(cosx)\Rightarrow \dfrac{{d{{(\sin x)}^n}}}{{dx}} = n{\sin ^{n - 1}}x\left( {\cos x} \right)
Substituting the term d(sinx)ndx=nsinn1x(cosx)\dfrac{{d{{(\sin x)}^n}}}{{dx}} = n{\sin ^{n - 1}}x\left( {\cos x} \right) and integrating we get,

\pi \\\ 0 \end{array} - \int\limits_0^\pi {n{{\sin }^{n - 1}}x\cos x} {e^x}dx$$ Applying the limit values for the integral term, $$ \Rightarrow {I_n} = \left[ {{{(\sin \pi )}^n}{e^\pi } - {{(\sin 0)}^n}{e^0}} \right] - \int\limits_0^\pi {n{{\sin }^{n - 1}}x\cos x} {e^x}dx$$ $$\sin \pi = 0$$ and $$\sin 0 = 0$$ by using this we get, $$ \Rightarrow {I_n} = (0 - 0) - n\int\limits_0^\pi {{{\sin }^{n - 1}}x\cos x} {e^x}dx$$ $$ \Rightarrow {I_n} = - n\int\limits_0^\pi {{{\sin }^{n - 1}}x\cos x} {e^x}dx$$ Now we will take $${\sin ^{n - 1}}x\cos x$$ as first term and $${e^x}$$as second term and applying integral by parts we get, $$ \Rightarrow {I_n} = - n\int\limits_0^\pi {{{\sin }^{n - 1}}x\cos x} {e^x}dx = \int {u\dfrac{{dv}}{{dx}}dx} $$ from this, $$u = - n{\sin ^{n - 1}}x\cos x$$ and $\dfrac{{du}}{{dx}} = \dfrac{{ - nd\left( {{{\sin }^{n - 1}}x\cos x} \right)}}{{dx}}$, $\dfrac{{dv}}{{dx}} = {e^x}$ and $v = \int\limits_0^\pi {{e^x}dx} $ By Substituting the values of $u$, $\dfrac{{du}}{{dx}}$, $v$ and $\dfrac{{dv}}{{dx}}$ in $$\int {u\dfrac{{dv}}{{dx}}dx = uv - \int {v\dfrac{{du}}{{dx}}} } dx$$ we get, $$ \Rightarrow {I_n} = - n{\sin ^{n - 1}}x\cos x\int\limits_0^\pi {{e^x}dx} - \left( { - n} \right)\int\limits_0^\pi {\dfrac{{d({{\sin }^{n - 1}}x\cos x)}}{{dx}}{e^x}dx} $$ Integrating the terms, $$ \Rightarrow {I_n} = - n\left[ {{{\sin }^{n - 1}}x\cos x.{e^x}} \right]\begin{array}{*{20}{c}} \pi \\\ 0 \end{array} + n\int\limits_0^\pi {\dfrac{{d({{\sin }^{n - 1}}x\cos x)}}{{dx}}{e^x}dx} $$ Applying the limit values for the integral term, $$ \Rightarrow {I_n} = - n\left[ {{{\sin }^{n - 1}}\pi \cos \pi .{e^\pi } - {{\sin }^{n - 1}}0\cos 0.{e^0}} \right] + n\int\limits_0^\pi {\dfrac{{d({{\sin }^{n - 1}}x\cos x)}}{{dx}}{e^x}dx} $$ $${\sin ^{n - 1}}\pi = 0$$ and $${\sin ^{n - 1}}0 = 0$$ by using this we get, $$ \Rightarrow {I_n} = (0 - 0) + n\int\limits_0^\pi {\dfrac{{d({{\sin }^{n - 1}}x\cos x)}}{{dx}}{e^x}dx} $$ $$ \Rightarrow {I_n} = n\int\limits_0^\pi {\dfrac{{d({{\sin }^{n - 1}}x\cos x)}}{{dx}}{e^x}dx} $$ Let us consider the term, $$\dfrac{{d\left( {{{\sin }^{n - 1}}x\cos x} \right)}}{{dx}}$$ Differentiating with respect to $$x$$, Differentiate using the differentiating formula, $\dfrac{{d({x^n})}}{{dx}} = n{x^{n - 1}}$ $\dfrac{{d\left( {\sin x} \right)}}{{dx}} = \cos x$ $\dfrac{{d\left( {\cos x} \right)}}{{dx}} = - \sin x$ $$ \Rightarrow \dfrac{{d\left( {{{\sin }^{n - 1}}x\cos x} \right)}}{{dx}} = (n - 1){\sin ^{n - 2}}x\cos x.\cos x - {\sin ^{n - 1}}x\sin x$$ Multiplying the common term $\cos x$, $$ \Rightarrow (n - 1){\sin ^{n - 2}}x{\cos ^2}x - {\sin ^{n - 1}}x\sin x$$ We know that ${\cos ^2}x = 1 - {\sin ^2}x$, $$ \Rightarrow (n - 1){\sin ^{n - 2}}x(1 - {\sin ^2}x) - {\sin ^{n - 1}}x\sin x$$ Multiply this $$(n - 1){\sin ^{n - 2}}x$$ into $$(1 - {\sin ^2}x)$$ and simplifying the power values of $${\sin ^{n - 1}}x\sin x$$ we get, $$ \Rightarrow (n - 1){\sin ^{n - 2}}x - (n - 1){\sin ^n}x - {\sin ^n}x$$ Multiplying $$(n - 1)$$ into $${\sin ^n}x$$, $$ \Rightarrow (n - 1){\sin ^{n - 2}}x - n{\sin ^n}x + {\sin ^n}x - {\sin ^n}x$$ Simplifying we get, $$ \Rightarrow (n - 1){\sin ^{n - 2}}x - n{\sin ^n}x$$ Thus we get, $$\dfrac{{d\left( {{{\sin }^{n - 1}}x\cos x} \right)}}{{dx}} = (n - 1){\sin ^{n - 2}}x - n{\sin ^n}x$$ Substituting the value of $$\dfrac{{d\left( {{{\sin }^{n - 1}}x\cos x} \right)}}{{dx}}$$ in $${I_n} = n\int\limits_0^\pi {\dfrac{{d({{\sin }^{n - 1}}x\cos x)}}{{dx}}{e^x}dx} $$, $$ \Rightarrow {I_n} = n\int\limits_0^\pi {\left[ {(n - 1){{\sin }^{n - 2}}x - n{{\sin }^n}x} \right]} {e^x}dx$$ $n\; {{\& }} n - 1$ are independent from $x$, taking out them from integral, $$ \Rightarrow {I_n} = n(n - 1)\int\limits_0^\pi {{{\sin }^{n - 2}}x.{e^x}dx - {n^2}\int\limits_0^\pi {{{\sin }^n}x} } {e^x}dx$$ Since, $${I_n} = \int\limits_0^\pi {{e^x}{{(\sin x)}^n}dx} = \int\limits_0^\pi {{{\sin }^n}x.{e^x}dx} $$ For $n = n - 2$, $${I_{n - 2}} = \int\limits_0^\pi {{e^x}{{(\sin x)}^{n - 2}}dx} = \int\limits_0^\pi {{{\sin }^{n - 2}}x.{e^x}dx} $$ By using this we can rewrite, $$ \Rightarrow {I_n} = n(n - 1){I_{n - 2}} - {n^2}{I_n}$$ Simplifying we get, $$ \Rightarrow {I_n} + {n^2}{I_n} = n(n - 1){I_{n - 2}}$$ Taking out the common term $${I_n}$$ in the L.H.S, $$ \Rightarrow {I_n}(1 + {n^2}) = n(n - 1){I_{n - 2}}$$ Arranging the $${I_n}$$ terms in L.H.S, $$ \Rightarrow \dfrac{{{I_n}}}{{{I_{n - 2}}}} = \dfrac{{n(n - 1)}}{{1 + {n^2}}}$$ Putting, $$n = 3$$ we get, $$ \Rightarrow \dfrac{{{I_3}}}{{{I_{3 - 2}}}} = \dfrac{{{I_3}}}{{{I_1}}} = \dfrac{{3(3 - 1)}}{{1 + {3^2}}}$$ Simplifying we get, $$ \Rightarrow \dfrac{{3 \times 2}}{{1 + 9}} = \dfrac{6}{{10}} = \dfrac{3}{5}$$ $$\therefore \dfrac{{{I_3}}}{{{I_1}}} = \dfrac{3}{5}$$ **So, the correct answer is “Option A”.** **Note:** Integration by parts is a technique for performing indefinite integration $$\int {udv} $$ or definite integration $$\int\limits_a^b {udv} $$ by expanding the differential of a product of functions $$d(uv)$$ and expressing the original integral in terms of a known integral $$\int {vdu} $$. A single integration by parts starts with $$d(uv) = udv + vdu$$ And integrating both sides, $$\int {d(uv) = uv} = \int {udv} + \int {vdu} $$ Rearranging we get, $$\int {udv} = uv - \int {vdu} $$