Question
Question: If \[{{I}_{n}}=\int{{{\left( \sin x \right)}^{n}}dx,n\in N.}\] Then, \[5{{I}_{4}}-6{{I}_{6}}\] is eq...
If In=∫(sinx)ndx,n∈N. Then, 5I4−6I6 is equal to:
(a) sinx.(cosx)5+C
(b) sin2x.cos2x+C
(c) 8sin2x[cos2x+1−2cos2x]+C
(d) 8sin2x[cos2x+1+2cos2x]+C
Solution
Hint: To solve the question given above, we will first find out the values of I4 and I6 by putting n = 4 and n = 6 respectively in the equation given. For the calculation of I4 and I6, our main aim will be to convert higher powers of the sine function to the sine functions or cosine functions with single power. Then we will put the values of I4 and I6 in 5I4−6I6 and then solve.
Complete step-by-step answer:
In the first step, we are going to calculate the value of I4. We know that,
In=∫(sinx)ndx
When we put n = 4 in the above equation, we get,
I4=∫(sinx)4dx
Now, we have to find the value of I4. As we know that the direct integration of (sinx)4 does not exist, so we will try to reduce the power. For this, we will write (sinx)4 as (sin2x)2 with the help of the identity (ab)c=ab×c. Thus, we will get,
I4=∫(sin2x)2dx
Now, here we will use a trigonometric identity,
cos2θ=1−2sin2θ
⇒1−cos2θ=2sin2θ
⇒sin2θ=21−cos2θ
By using the above identity, we will get,
I4=∫(21−cos2x)2dx
⇒I4=∫4(1−cos2x)2dx
⇒I4=41∫(1−cos2x)2dx
Now, we will use the identity,
(a−b)2=a2+b2−2ab.
Thus, we will get,
⇒I4=41∫(1+cos22x−2cos2x)dx.....(i)
Now, here we will use another trigonometric identity:
cos2θ=2cos2θ−1
⇒2cos2θ=1+cos2θ
⇒cos2θ=21+cos2θ
Putting θ=2x, we will get,
⇒cos22x=21+cos4x.....(ii)
Putting the value of cos22x from (ii) to (i), we will get,
⇒I4=41∫(1+21+cos4x−2cos2x)dx
⇒I4=41∫(1+21+2cos4x−2cos2x)dx
⇒I4=41∫(23+2cos4x−2cos2x)dx
⇒I4=41∫23dx+41∫2cos4xdx−41∫2cos2xdx
Now, here we will use the following integration formulas,
∫adx=ax+C
∫cosadx=asinax+C
⇒I4=[41(23x)+C1]+[41(4sin4x)(21)+C2]−[41(22sin2x)+C3]
⇒I4=83x+C1+32sin4x+C2−4sin2x+C3
Considering the constants C1=C2=C3=C4, we get,
⇒I4=83x+32sin4x−4sin2x+C4.....(iii)
Now, similarly, we will calculate the value of I6. Thus, we have,
I6=∫(sin6x)dx
⇒I6=∫(sin3x)2dx
Now, we will use a trigonometric identity here,
sin3θ=3sinθ−4sin3θ
⇒4sin3θ=3sinθ−sin3θ
⇒sin3θ=43sinθ−sin3θ
Thus, after using this identity, we will get,
⇒I6=∫(43sinx−sin3x)2dx
⇒I6=161∫(3sinx−sin3x)2dx
Now, we will use the identity,
(a−b)2=a2+b2−2ab
Thus, we will get,
⇒I6=161∫(9sin2x+sin23x−6sinxsin3x)dx
Now, here we will use two trigonometric identities,
cos2θ=1−2sin2θ
⇒sin2θ=21−cos2θ
Similarly,
sin23θ=21−cos6θ
Also, 2 sin A sin B = cos (A – B) – cos (A + B)
Thus, we will get,
⇒I6=161∫[29(1−cos2x)+21(1−cos6x)−3(2sinxsin3x)]dx
⇒I6=161∫[29−29cos2x+21−2cos6x−3(cos(x−3x)−cos(x+3x))] dx
⇒I6=161∫[5−29cos2x−2cos6x−3(cos2x−cos4x)] dx
⇒I6=161∫[5−215cos2x+3cos4x−2cos6x] dx
⇒I6=161∫5dx−161∫215cos2xdx+161∫3cos4xdx−161∫2cos6xdx
Now, we will use some integration formulas here,
∫adx=ax+c
∫cosaxdx=asinax+c
Thus, we will get,
⇒I6=[161(5x)+C5]−[161(415sin2x)+C6]+[161(43sin4x)+C7]−[161(12cos6x)+C8]
⇒I6=165x+C5−6415sin2x+C6+643sin4x+C7−192sin6x+C8
Considering the constants C5=C6=C7=C8=C9, we get,
⇒I6=165x−6415sin2x+643sin4x−192sin6x+C9.....(iv)
Now, we have to find the value of 5I4−6I6. Thus, we will get,
5I4−6I6=5[83x+32sin4x−4sin2x+C4]−6[165x−6415sin2x+643sin4x−192sin6x+C9]
5I4−6I6=815x+325sin4x−45sin2x+5C4−815x+3245sin2x−329sin4x+32sin6x−6C9
Taking the constant, 5C4−6C9=C, we get,
5I4−6I6=8−1sin4x+325sin2x+32sin6x+C.....(v)
Now, we will use two trigonometric identities here,
sin2x=2sinxcosx
⇒sin4x=2sin2xcos2x....(vi)
sin3x=3sinx−4sin3x
⇒sin6x=3sin2x−4sin3(2x).....(vii)
Putting the values of sin 4x and sin 6x from (vi) and (vii) to (v), we will get,
5I4−6I6=8−1[2sin2xcos2x]+325sin2x+321[3sin2x−4sin32x]+C
5I4−6I6=4−sin2xcos2x+325sin2x+323sin2x−324sin32x+C
5I4−6I6=4−sin2xcos2x+4sin2x−8sin22x+C
5I4−6I6=8sin2x[−2cos2x+2−sin22x]+C
5I4−6I6=8sin2x[−2cos2x+2−(1−cos22x)]+C
5I4−6I6=8sin2x[1+cos22x−2cos2x]+C
Hence, the option (c) is the right answer.
Note: We can also use the reduction formula to solve this question. Reduction formula for integral of the sine function is,
∫sinnxdx=n−1sin(n−1)xcosx+n(n−1)∫sin(n−2)xdx
⇒n∫sinnxdx=−sin(n−1)xcosx+(n−1)∫sin(n−2)xdx
⇒nIn=−sin(n−1)xcosx+(n−1)In−2
Now, we will put n = 6. Thus, we will get,
⇒6I6=−sin(6−1)xcosx+(6−1)I6−2
⇒6I6=−sin5xcosx+5I4
⇒5I4−6I6=sin5xcosx
⇒5I4−6I6=sin4x(sinxcosx)
Now, we will use sin 2x = 2 sin x cos x. Thus, we will get,
⇒5I4−6I6=sin4x(2sin2x)=(sin2x)2(2sin2x)
Now, we will use the identity,
sin2x=21−cos2x
Thus, we get,
⇒5I4−6I6=4(1−cos2x)2(2sin2x)
⇒5I4−6I6=8sin2x[1+cos22x−2cos2x]