Solveeit Logo

Question

Mathematics Question on integral

If In=sinnxsinxdxI_{n} = \int \frac{\sin nx}{\sin x} dx for n=1,2,3,...,n = 1, 2 , 3,..., then I6I_6 =

A

35sin3x+83sin5xsinx+c\frac{3}{5} \sin3x + \frac{8}{3} \sin^{5} x -\sin x +c

B

25sin5x53sin3x2sinx+c\frac{2}{5} \sin 5x - \frac{5}{3} \sin^{3} x - 2 \sin x +c

C

23sin5x83sin5x+4sinx+c\frac{2}{3} \sin 5x - \frac{8}{3} \sin^{5} x + 4 \sin x +c

D

25sin5x83sin3x+4sinx+c\frac{2}{5} \sin 5 x -\frac{8}{3} \sin^{3} x + 4 \sin x +c

Answer

25sin5x83sin3x+4sinx+c\frac{2}{5} \sin 5 x -\frac{8}{3} \sin^{3} x + 4 \sin x +c

Explanation

Solution

Given, In=sinnxsinxdx I_{n} =\int \frac{\sin n x}{\sin x} d x \dots(i) In2=sin(n2)xsinxdx I_{n-2} =\int \frac{\sin (n-2) x}{\sin x} d x \dots(ii) Subtracting E (ii) from E (i), we get InIn2=sinnxsin(n2)xsinxdxI_{n}-I_{n-2}=\int \frac{\\{\sin n x-\sin (n-2) x\\}}{\sin x} d x =2cos(n1)xsinxsinxdx=2cos(n1)xdx=\int \frac{2 \cos (n-1) x \sin x}{\sin x} d x=\int 2 \cos (n-1) x d x =2sin(n1)x(n1)=\frac{2 \sin (n-1) x}{(n-1)} I6I4=2sin5x5\therefore I_{6}-I_{4}=\frac{2 \sin 5 x}{5} and I4I2=2sin3x3I_{4}-I_{2}=\frac{2 \sin 3 x}{3} Now, I2=sin2xsinxdx I_{2}=\int \frac{\sin 2 x}{\sin x} d x =2sinxcosxsinxdx=2cosxdx=\int \frac{2 \sin x \cos x}{\sin x} d x=2 \int \cos x d x =2sinx+c=2 \sin x+c and I6=I4+2sin3x5 I_{6}=I_{4}+2 \frac{\sin 3 x}{5} =I2+2sin3x3+2sin5x5=I_{2}+2 \frac{\sin 3 x}{3}+2 \frac{\sin 5 x}{5} =2sin5x5+2sin3x3+2sinx+c=2 \frac{\sin 5 x}{5}+2 \frac{\sin 3 x}{3}+2 \sin x+c =2sin5x5+23(3sinx4sin3x)+2sinx+c=\frac{2 \sin 5 x}{5}+\frac{2}{3}\left(3 \sin x-4 \sin ^{3} x\right)+2 \sin x+c I6=25sin5x83sin3x+4sinx+cI_{6}=\frac{2}{5} \sin 5 x-\frac{8}{3} \sin ^{3} x+4 \sin x+c