Solveeit Logo

Question

Question: If \({I_n} = \int {{{\cot }^n}xdx} \) , then \({I_0} + {I_1} + 2\left( {{I_2} + {I_3} + ..... + {I_8...

If In=cotnxdx{I_n} = \int {{{\cot }^n}xdx} , then I0+I1+2(I2+I3+.....+I8)+I9+I10{I_0} + {I_1} + 2\left( {{I_2} + {I_3} + ..... + {I_8}} \right) + {I_9} + {I_{10}} equals to: (where, u=cotxu = \cot x ).
A) u+u22+....+u99u + \dfrac{{{u^2}}}{2} + .... + \dfrac{{{u^9}}}{9}
B) (u+u22+....+u99) - \left( {u + \dfrac{{{u^2}}}{2} + .... + \dfrac{{{u^9}}}{9}} \right)
C) (u+u22!+....+u99!) - \left( {u + \dfrac{{{u^2}}}{{2!}} + .... + \dfrac{{{u^9}}}{{9!}}} \right)
D) u2+2u23+....+9u910\dfrac{u}{2} + \dfrac{{2{u^2}}}{3} + .... + \dfrac{{9{u^9}}}{{10}}

Explanation

Solution

We can take the integral In=cotnxdx{I_n} = \int {{{\cot }^n}xdx} and expand the power as a product. Then we can use trigonometric identities to simplify the equation. Then we can integrate and simplify the equation. Then we can take the given expression and rearrange it by expanding the brackets. Then we can give necessary substitutions. Then by further simplification, we get the required solution.

Complete step by step solution:
We are given that In=cotnxdx{I_n} = \int {{{\cot }^n}xdx}
We can expand the power as follows,
In=cotn2x(cot2x)dx\Rightarrow {I_n} = \int {{{\cot }^{n - 2}}x\left( {{{\cot }^2}x} \right)dx}
We know that cot2x=cosec2x1{\cot ^2}x = \cos e{c^2}x - 1 . On substituting this on the integral, we get
In=cotn2x(cosec2x1)dx\Rightarrow {I_n} = \int {{{\cot }^{n - 2}}x\left( {\cos e{c^2}x - 1} \right)dx}
On expanding the bracket, we get
In=(cotn2x.cosec2xcotn2)dx\Rightarrow {I_n} = \int {\left( {{{\cot }^{n - 2}}x.\cos e{c^2}x - {{\cot }^{n - 2}}} \right)dx}
On expanding the integral, we get
In=cotn2x.cosec2xdxcotn2dx\Rightarrow {I_n} = \int {{{\cot }^{n - 2}}x.\cos e{c^2}xdx} - \int {{{\cot }^{n - 2}}dx}
From the definition, we can say that In2=cotn2dx{I_{n - 2}} = \int {{{\cot }^{n - 2}}dx} . So, we can write the above equation as
In=cotn2x.cosec2xdxIn2\Rightarrow {I_n} = \int {{{\cot }^{n - 2}}x.\cos e{c^2}xdx} - {I_{n - 2}}
On rearranging, we get
In+In2=cotn2x.cosec2xdx\Rightarrow {I_n} + {I_{n - 2}} = \int {{{\cot }^{n - 2}}x.\cos e{c^2}xdx}
Now give substitution u=cotxu = \cot x ,
Then its derivative is dudx=cosec2x\dfrac{{du}}{{dx}} = \cos e{c^2}x
du=cosec2xdx\Rightarrow du = \cos e{c^2}xdx
Therefore, by substituting u and du in the equation, the integral will become
In+In2=un2.du\Rightarrow {I_n} + {I_{n - 2}} = \int {{u^{n - 2}}.du}
We know that xn.dx=xn+1n+1\int {{x^n}.dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}} . So, the integral will become
In+In2=un1n1\Rightarrow {I_n} + {I_{n - 2}} = \dfrac{{{u^{n - 1}}}}{{n - 1}}…. (1)
Now we need to find the value of I0+I1+2(I2+I3+.....+I8)+I9+I10{I_0} + {I_1} + 2\left( {{I_2} + {I_3} + ..... + {I_8}} \right) + {I_9} + {I_{10}} .
Let K=I0+I1+2(I2+I3+.....+I8)+I9+I10K = {I_0} + {I_1} + 2\left( {{I_2} + {I_3} + ..... + {I_8}} \right) + {I_9} + {I_{10}}
On grouping the terms as the sum of alternate terms, we get
K=(I0+I2)+(I1+I3)+(I2+I4)+....+(I7+I9)+(I8+I10)\Rightarrow K = \left( {{I_0} + {I_2}} \right) + \left( {{I_1} + {I_3}} \right) + \left( {{I_2} + {I_4}} \right) + .... + \left( {{I_7} + {I_9}} \right) + \left( {{I_8} + {I_{10}}} \right)
On substituting equation (1), we get
K=(u11)+(u22)+(u33)+....+(u88)+(u99)\Rightarrow K = \left( {\dfrac{{{u^1}}}{1}} \right) + \left( {\dfrac{{{u^2}}}{2}} \right) + \left( {\dfrac{{{u^3}}}{3}} \right) + .... + \left( {\dfrac{{{u^8}}}{8}} \right) + \left( {\dfrac{{{u^9}}}{9}} \right)
On simplification and removing the brackets, we get
K=u+u22+u33+....+u88+u99\Rightarrow K = u + \dfrac{{{u^2}}}{2} + \dfrac{{{u^3}}}{3} + .... + \dfrac{{{u^8}}}{8} + \dfrac{{{u^9}}}{9}
Therefore, the required solution is u+u22+u33+....+u88+u99u + \dfrac{{{u^2}}}{2} + \dfrac{{{u^3}}}{3} + .... + \dfrac{{{u^8}}}{8} + \dfrac{{{u^9}}}{9}

So, the correct answer is option A.

Note:
We cannot find the integral of each term. We can only find a relation between 2 terms in the given series. While taking cot2x{\cot ^2}x in the 1st{1^{st}} step, we must note that the remaining power is reduced and not increased. We must give the substitutions which are given in the question. While integrating, we must find the derivative of the new variable and then give the substitution to change the variable of integration. We need not to substitute the variable after integration as the answer is also in terms of the same variable.