Question
Question: If \[{{I_n }} = \int {{{\cot }^n}{\text{x}}} {\text{ dx}}\]and \[I_{\text{0}} + I_{\text{1}}{\text{ ...
If In=∫cotnx dxand I0+I1 + 2(I2+I3.....I8)+I9+I10=A(u +2u2+...+9u9)+C where u=cotx and C is an arbitrary constant, then
A) A=2
B) A=-1
C) A=1
D) A is dependent on x
Solution
We will apply the rules of integration on In and find the value of I0+I1 + 2(I2+I3.....I8)+I9+I10 and then equate it with the given value to get the value of A.
Formula Used:
The identity used is:
cot2x=csc2x−1
Complete step by step solution:
We are given that:
{\text{I_n }} = \int {{{\cot }^{n - 2}}{\text{x}}} {\text{.co}}{{\text{t}}^2}{\text{x dx}}
Now we know that,
cot2x=csc2x−1
Therefore, applying this formula in the above equation we get:
Now since we know that,
{\text{I_n - 2 }} = \int {{{\cot }^{n - 2}}{\text{x}}} {\text{ dx}}
Therefore replacing it in above equation we get:
Now Let cotx=t
Then, - csc2x dx=dt
Substituting these values in the above equation we get:
{\text{I_n + I_n - 2 }} = - \int {{t^{n - 2}}} {\text{dt}}
Now applying the following formula:
∫xndx=n+1xn+1+C
We get:-
{\text{I_n + I_n - 2 }} = - \dfrac{{{t^{n - 1}}}}{{n - 1}} + C
Now substituting back the value of t we get:-
{\text{I_n + I_n - 2 }} = - \dfrac{{{{\cot }^{n - 1}}x}}{{n - 1}} + C
Since,
I0+I1 + 2(I2+I3.....I8)+I9+I10=(I2+I0)+(I3+I1)+(I4+I2)+(I5+I3)+(I6+I4)+(I7+I5)+(I8+I6)+(I9+I7)+(I10+I8)
Hence applying the above derived formula we get:
=−(cotx+2cot2x+3cot3x+4cot4x......9cot9x)+C
Let cotx=u
Then putting this value in the above equation we get:-
I0+I1 + 2(I2+I3.....I8)+I9+I10=−(u+2u2+3u3+4u4......9u9)+C
Comparing this with the given value we get:
A=−1
Hence, option B is correct.
Note:
The result of the given series can be directly applied to get the value of A. The result is:
{\text{I_n + I_n - 2 }} = - \dfrac{{{{\cot }^{n - 1}}x}}{{n - 1}} + C