Solveeit Logo

Question

Question: If I =\(\int \frac { d x } { \sec x + \operatorname { cosec } x ^ { \prime } }\), then I equals:...

If I =dxsecx+cosecx\int \frac { d x } { \sec x + \operatorname { cosec } x ^ { \prime } }, then I equals:

A

12\frac { 1 } { 2 } (cosx+sinx12log(cosecxcosx))\left( \cos x + \sin x - \frac{1}{\sqrt{2}}\log(\cos ecx–\cos x) \right) + C

B

12\frac{1}{2} (sinxcosx12logcosecx+cotx)\left( \sin x - \cos x - \frac { 1 } { \sqrt { 2 } } \log | \operatorname { cosec } x + \cot x | \right)+ C

C

12\frac{1}{\sqrt{2}} (sinx+cosx+12logcosecxcosx)\left( \sin x + \cos x + \frac { 1 } { 2 } \log | \operatorname { cosec } x - \cos x | \right)+ C

D

None of these

Answer

None of these

Explanation

Solution

I = sinxcosxsinx+cosx\int \frac { \sin x \cos x } { \sin x + \cos x }dx

= 12\frac { 1 } { 2 } (sinx+cosx)21sinx+cosx\int_{}^{}\frac{(\sin x + \cos x)^{2} - 1}{\sin x + \cos x}dx

= 12\frac { 1 } { 2 } [sinx+cosx12sin(x+π/4)]\int_{}^{}\left\lbrack \sin x + \cos x - \frac{1}{\sqrt{2}\sin(x + \pi/4)} \right\rbrackdx

= 12\frac{1}{2} [sin x – cos x] – 12\frac{1}{\sqrt{2}}log |cosec (x + p/4)

– cot (x + p/4)| + C