Question
Question: If I =\(\int \frac { d x } { \sec x + \operatorname { cosec } x ^ { \prime } }\), then I equals:...
If I =∫secx+cosecx′dx, then I equals:
A
21 (cosx+sinx−21log(cosecx–cosx)) + C
B
21 (sinx−cosx−21log∣cosecx+cotx∣)+ C
C
21 (sinx+cosx+21log∣cosecx−cosx∣)+ C
D
None of these
Answer
None of these
Explanation
Solution
I = ∫sinx+cosxsinxcosxdx
= 21 ∫sinx+cosx(sinx+cosx)2−1dx
= 21 ∫[sinx+cosx−2sin(x+π/4)1]dx
= 21 [sin x – cos x] – 21log |cosec (x + p/4)
– cot (x + p/4)| + C