Solveeit Logo

Question

Question: If I = ![](https://cdn.pureessence.tech/canvas_600.png?top_left_x=1579&top_left_y=300&width=200&heig...

If I = 1+x1+x\sqrt{\frac{1 + x}{1 + x}} dx, then I equals:

A

log |x| + log 1+1x2\left| 1 + \sqrt{1 - x^{2}} \right|+ sin–1x\sqrt{x}+ C

B

log |x| – log 11x2\left| 1 - \sqrt{1 - x^{2}} \right|+ tan–1 x + C

C

log |x| – log 1+1x2\left| 1 + \sqrt{1 - x^{2}} \right|– sin–1 x + C

D

log1+1x2\left| 1 + \sqrt{1 - x^{2}} \right|– log |x| + cos–1 x + C

Answer

log |x| – log 1+1x2\left| 1 + \sqrt{1 - x^{2}} \right|– sin–1 x + C

Explanation

Solution

I = 1x1x2\frac{1 - x}{\sqrt{1 - x^{2}}}dx

= dxx1x2\int \frac { d x } { x \sqrt { 1 - x ^ { 2 } } }dx1x2\int_{}^{}\frac{dx}{\sqrt{1 - x^{2}}}

In the first integral, put x = 1t\frac{1}{t}, so that

I = (1/t2)dt1t11t2\int \frac { \left( - 1 / \mathrm { t } ^ { 2 } \right) \mathrm { dt } } { \frac { 1 } { \mathrm { t } } \sqrt { 1 - \frac { 1 } { \mathrm { t } ^ { 2 } } } }– sin–1 x = – dtt21\int_{}^{}\frac{dt}{\sqrt{t^{2} - 1}}– sin–1 x

= – log | t + t21\sqrt{t^{2} - 1}| – sin–1 x + C

= – log 1x+1x2x\left| \frac{1}{x} + \frac{\sqrt{1 - x^{2}}}{x} \right|– sin–1 x + C

= log |x| – log |1 + 1x2\sqrt{1 - x^{2}}| – sin–1 x + C