Question
Question: If I (m, n) = \(\int _ { 0 } ^ { 1 } \mathrm { t } ^ { \mathrm { m } }\) (1 + t)<sup>n</sup> dt ; m...
If I (m, n) = ∫01tm (1 + t)n dt ; m, n Ī R, then I (m, n) is -
A
1+mn I [(m + 1), (n – 1)]
B
n+1m I [(m + 1), (n – 1)]
C
–
I [(m + 1, n – 1)]
D
–
I [(m + 1, n – 1)]
Answer
–
I (m+1,n–1)
Explanation
Solution
I (m, n) = ∫01tm(1 + t)n dt =
[Integrating by Parts]
= –
tm +1 dt
= –
I [(m + 1), (n – 1)].