Solveeit Logo

Question

Question: If I (m, n) = \(\int _ { 0 } ^ { 1 } \mathrm { t } ^ { \mathrm { m } }\) (1 + t)<sup>n</sup> dt ; m...

If I (m, n) = 01tm\int _ { 0 } ^ { 1 } \mathrm { t } ^ { \mathrm { m } } (1 + t)n dt ; m, n Ī R, then I (m, n) is -

A

n1+m\frac { \mathrm { n } } { 1 + \mathrm { m } } I [(m + 1), (n – 1)]

B

mn+1\frac { \mathrm { m } } { \mathrm { n } + 1 } I [(m + 1), (n – 1)]

C

I [(m + 1, n – 1)]

D

I [(m + 1, n – 1)]

Answer

I (m+1,n1)(m + 1, n – 1)

Explanation

Solution

I (m, n) = 01tm\int _ { 0 } ^ { 1 } \mathrm { t } ^ { \mathrm { m } }(1 + t)n dt =

[Integrating by Parts]

= tm +1 dt

= I [(m + 1), (n – 1)].