Solveeit Logo

Question

Mathematics Question on Quadratic Equations

If Im(z12z+1)=4,{{I}_{m}}\left( \frac{z-1}{2z+1} \right)=-4, then locus of z is

A

ellipse

B

parabola

C

straight line

D

circle

Answer

circle

Explanation

Solution

Let z=x+iyz=x+i y
z12z+1=x+iy12x+2iy+1\therefore \frac{z-1}{2 z+1}=\frac{x+i y-1}{2 x+2 i y+1}
=(x1)+iy(2x+1)+2iy×(2x+1)2iy(2x+1)2iy=\frac{(x-1)+i y}{(2 x+1)+2 i y} \times \frac{(2 x+1)-2 i y}{(2 x+1)-2 i y}
=(x1)(2x+1)2iy(x1)+iy(2x+1)+2y2(2x+1)2+4y2=\frac{(x-1)(2 x+1)-2 i y(x-1)+i y(2 x+1)+2 y^{2}}{(2 x+1)^{2}+4 y^{2}}
=\frac{\left\\{(x-1)(2 x+1)+2 y^{2}\right\\}+i y\\{-2 x+2+2 x+1\\}}{(2 x+1)^{2}+4 y^{2}}
According to question
Im(z12z+1)=4I_{m}\left(\frac{z-1}{2 z+1}\right)=-4
3y(2x+1)2+4y2=4\therefore \frac{3 y}{(2 x+1)^{2}+4 y^{2}}=-4
3y4=4x2+4y2+4x+1\Rightarrow-\frac{3 y}{4}=4 x^{2}+4 y^{2}+4 x+1
16x2+16y2+16x+3y+4=0\Rightarrow 16 x^{2}+16 y^{2}+16 x+3 y+4=0
This equation represents a circle.
\therefore The locus of zz is a circle.