Solveeit Logo

Question

Mathematics Question on integral

If Im=1e(lnx)mdxI_{m}=\int\limits_{1}^{e}(\ln x)^{m} d x, where mNm \in N, then I10+10I9I_{10}+10 I_{9} is equal to -

A

e10e^{10}

B

e1010\frac{e^{10}}{10}

C

ee

D

e1e^{ -1}

Answer

ee

Explanation

Solution

I10=1e1.(lnx)10dx=[(lnx)10x]1eI_{10}=\int\limits_{1}^{e} 1 .(\ln x)^{10} d x=\left[(\ln x)^{10} x\right]_{1}^{e}
1e10(lnx)91xxdx-\int\limits_{-1}^{e} 10(\ln x)^{9} \cdot \frac{1}{x} \cdot x d x
=e0101e(lnx)9dx=e-0-10 \int\limits_{1}^{e}(\ln x)^{9} d x
=e10I9+10I9=e=e-10 I_{9}+10 I_{9}=e