Solveeit Logo

Question

Question: If \(I\) is the unit matrix of order \(2\times 2\) and \(M-2I=3\left[ \begin{matrix} -1 & 0 \\\...

If II is the unit matrix of order 2×22\times 2 and M2I=3[10 41 ]M-2I=3\left[ \begin{matrix} -1 & 0 \\\ 4 & 1 \\\ \end{matrix} \right] , then find the matrix MM .

Explanation

Solution

Here we have been asked to find the matrix MM when I=[10 01 ]I=\left[ \begin{matrix} 1 & 0 \\\ 0 & 1 \\\ \end{matrix} \right] and M2I=3[10 41 ]M-2I=3\left[ \begin{matrix} -1 & 0 \\\ 4 & 1 \\\ \end{matrix} \right] . For that sake we will perform simple arithmetic operations between matrices.

Complete step-by-step solution:
Now considering from the question we have been given that II is an unit matrix of order 2×22\times 2 that is I=[10 01 ]I=\left[ \begin{matrix} 1 & 0 \\\ 0 & 1 \\\ \end{matrix} \right] .
We need to find the matrix MM when M2I=3[10 41 ]M-2I=3\left[ \begin{matrix} -1 & 0 \\\ 4 & 1 \\\ \end{matrix} \right] .
For doing that, we will perform simple arithmetic operations like addition, subtraction and multiplication between matrices.
By simplifying the matrix we will have M2[10 01 ]=3[10 41 ]\Rightarrow M-2\left[ \begin{matrix} 1 & 0 \\\ 0 & 1 \\\ \end{matrix} \right]=3\left[ \begin{matrix} -1 & 0 \\\ 4 & 1 \\\ \end{matrix} \right] .
Now we will transfer all other terms except MM to the right hand side of the expression.
After further simplifying we will have M=2[10 01 ]+3[10 41 ]\Rightarrow M=2\left[ \begin{matrix} 1 & 0 \\\ 0 & 1 \\\ \end{matrix} \right]+3\left[ \begin{matrix} -1 & 0 \\\ 4 & 1 \\\ \end{matrix} \right] .
Now we will perform further simplifications after that we will have M=2[10 01 ]+3[10 41 ] M=[20 02 ]+[30 123 ] M=[230 122+3 ] M=[10 125 ] \begin{aligned} & \Rightarrow M=2\left[ \begin{matrix} 1 & 0 \\\ 0 & 1 \\\ \end{matrix} \right]+3\left[ \begin{matrix} -1 & 0 \\\ 4 & 1 \\\ \end{matrix} \right] \\\ & \Rightarrow M=\left[ \begin{matrix} 2 & 0 \\\ 0 & 2 \\\ \end{matrix} \right]+\left[ \begin{matrix} -3 & 0 \\\ 12 & 3 \\\ \end{matrix} \right] \\\ & \Rightarrow M=\left[ \begin{matrix} 2-3 & 0 \\\ 12 & 2+3 \\\ \end{matrix} \right] \\\ & \Rightarrow M=\left[ \begin{matrix} -1 & 0 \\\ 12 & 5 \\\ \end{matrix} \right] \\\ \end{aligned}
Therefore we can conclude that if II is the unit matrix of order 2×22\times 2 that is the value of the unit matrix II is mathematically given as I=[10 01 ]I=\left[ \begin{matrix} 1 & 0 \\\ 0 & 1 \\\ \end{matrix} \right] and M2I=3[10 41 ]M-2I=3\left[ \begin{matrix} -1 & 0 \\\ 4 & 1 \\\ \end{matrix} \right] , then the value of the matrix MM will be M=[10 125 ]M=\left[ \begin{matrix} -1 & 0 \\\ 12 & 5 \\\ \end{matrix} \right] .

Note: During the process of answering questions of this type we should read the question carefully. This is a very simple question and can be solved accurately in less span of time. Very few mistakes are possible in questions of this type. The calculations of this type of questions should be done carefully. This type of question does not involve many concepts.
Here it is given that II is a unit matrix if we had not read the question correctly and assumed II as [11 11 ]\left[ \begin{matrix} 1 & 1 \\\ 1 & 1 \\\ \end{matrix} \right] then we will have
M2I=3[10 41 ] M=2I+3[10 41 ] M=2[11 11 ]+3[10 41 ] M=[22 22 ]+[30 123 ] M=[232 2+122+3 ] M=[12 145 ] \begin{aligned} & \Rightarrow M-2I=3\left[ \begin{matrix} -1 & 0 \\\ 4 & 1 \\\ \end{matrix} \right] \\\ & \Rightarrow M=2I+3\left[ \begin{matrix} -1 & 0 \\\ 4 & 1 \\\ \end{matrix} \right] \\\ & \Rightarrow M=2\left[ \begin{matrix} 1 & 1 \\\ 1 & 1 \\\ \end{matrix} \right]+3\left[ \begin{matrix} -1 & 0 \\\ 4 & 1 \\\ \end{matrix} \right] \\\ & \Rightarrow M=\left[ \begin{matrix} 2 & 2 \\\ 2 & 2 \\\ \end{matrix} \right]+\left[ \begin{matrix} -3 & 0 \\\ 12 & 3 \\\ \end{matrix} \right] \\\ & \Rightarrow M=\left[ \begin{matrix} 2-3 & 2 \\\ 2+12 & 2+3 \\\ \end{matrix} \right] \\\ & \Rightarrow M=\left[ \begin{matrix} -1 & 2 \\\ 14 & 5 \\\ \end{matrix} \right] \\\ \end{aligned} .
This is a wrong answer.