Solveeit Logo

Question

Question: If \(I\) is the identity matrix of order \(2\) and \(A=\left[ \begin{matrix} 1 & 1 \\\ 0 &...

If II is the identity matrix of order 22 and A=[11 01 ]A=\left[ \begin{matrix} 1 & 1 \\\ 0 & 1 \\\ \end{matrix} \right] , then for n1n\ge 1, mathematical induction gives
(a) An=nA(n1)I{{A}^{n}}=nA-(n-1)I
(b) An=nA+(n1)I{{A}^{n}}=nA+(n-1)I
(c) An=2nA(n+1)I{{A}^{n}}={{2}^{n}}A-(n+1)I
(d) An=2n1A(n1)I{{A}^{n}}={{2}^{n-1}}A-(n-1)I

Explanation

Solution

The principle of mathematical induction states that a statement P(n)P(n) is true for nNn\in \mathbb{N} if P(1)P(1) is true and assuming P(k)P(k) is true, P(k+1)P(k+1) can be proven to be true. We will first formulate a statement P(n)P(n). Then we will prove that P(n)P(n) is true for nNn\in \mathbb{N} using the principle of mathematical induction.

Complete step-by-step answer:
The statement of the principle of mathematical induction is as follows,
Suppose there is a given statement P(n)P(n) involving nNn\in \mathbb{N} such that
(i) The statement is true for n=1n=1, that is, P(1)P(1) is true, and
(ii) If the statement is true for n=kn=k where kk is some positive integer, then the statement is also true for n=k+1n=k+1. That is, the truth of P(k)P(k) implies the truth of P(k+1)P(k+1).
Then P(n)P(n) is true for all nNn\in \mathbb{N}.
We have A=[11 01 ]A=\left[ \begin{matrix} 1 & 1 \\\ 0 & 1 \\\ \end{matrix} \right] . Let us look at the square of this matrix,
A2=[11 01 ][11 01 ]=[12 01 ]{{A}^{2}}=\left[ \begin{matrix} 1 & 1 \\\ 0 & 1 \\\ \end{matrix} \right]\left[ \begin{matrix} 1 & 1 \\\ 0 & 1 \\\ \end{matrix} \right]=\left[ \begin{matrix} 1 & 2 \\\ 0 & 1 \\\ \end{matrix} \right] .
Now, we consider the next power of AA,
A3=[11 01 ][12 01 ]=[13 01 ]=3 [11 01 ](31)[10 01 ]{{A}^{3}}=\left[ \begin{matrix} 1 & 1 \\\ 0 & 1 \\\ \end{matrix} \right]\left[ \begin{matrix} 1 & 2 \\\ 0 & 1 \\\ \end{matrix} \right]=\left[ \begin{matrix} 1 & 3 \\\ 0 & 1 \\\ \end{matrix} \right]=3~\left[ \begin{matrix} 1 & 1 \\\ 0 & 1 \\\ \end{matrix} \right]-(3-1)\left[ \begin{matrix} 1 & 0 \\\ 0 & 1 \\\ \end{matrix} \right] .
Looking at the pattern, we can define a statement P(n)P(n) in the following manner,
P(n):=An=nA(n1)IP(n):={{A}^{n}}=nA-(n-1)I
For the base case, n=1n=1 , we have
A=[11 01 ]=1A0IA=\left[ \begin{matrix} 1 & 1 \\\ 0 & 1 \\\ \end{matrix} \right]=1\cdot A-0\cdot I .
Therefore, P(1)P(1) is true. Now, let us assume that P(k)P(k) is true. Therefore we have, Ak=kA(k1)I{{A}^{k}}=kA-(k-1)I.
Now, consider P(k+1)P(k+1). We will first calculate the LHS,
LHS=Ak+1 =AkA =[1k 01 ][11 01 ] =[1k+1 01 ]\begin{aligned} & LHS={{A}^{k+1}} \\\ & ={{A}^{k}}\cdot A \\\ & =\left[ \begin{matrix} 1 & k \\\ 0 & 1 \\\ \end{matrix} \right]\left[ \begin{matrix} 1 & 1 \\\ 0 & 1 \\\ \end{matrix} \right] \\\ & =\left[ \begin{matrix} 1 & k+1 \\\ 0 & 1 \\\ \end{matrix} \right] \end{aligned}
Calculating the RHS, we get
RHS=(k+1)A(k+11)I =[k+1k+1 0k+1 ][k0 0k ] =[1k+1 01 ]\begin{aligned} & RHS=(k+1)A-(k+1-1)I \\\ & =\left[ \begin{matrix} k+1 & k+1 \\\ 0 & k+1 \\\ \end{matrix} \right]-\left[ \begin{matrix} k & 0 \\\ 0 & k \\\ \end{matrix} \right] \\\ & =\left[ \begin{matrix} 1 & k+1 \\\ 0 & 1 \\\ \end{matrix} \right] \end{aligned}
Hence, we have LHS=RHSLHS=RHS and P(k+1)P(k+1) is true for any kk. Hence, P(n)P(n) is true for nNn\in \mathbb{N}.

So, the correct answer is “Option A”.

Note: We have to be careful while formulating the statement for the principle of mathematical induction. The matrix multiplication needs to be done properly, as there is a possibility to make minor mistakes which can lead to incorrect answers. Proving P(k+1)P(k+1) is true is the tricky part in the mathematical induction.