Solveeit Logo

Question

Question: If I = \(\int_{}^{}\left( \sqrt{\tan x} + \sqrt{\cot x} \right)\)dx, then I equals:...

If I = (tanx+cotx)\int_{}^{}\left( \sqrt{\tan x} + \sqrt{\cot x} \right)dx, then I equals:

A

2\sqrt{2}sin–1 (sin x + cos x) + C

B

2\sqrt{2}cos–1 (sin x –cos x) + C

C

2\sqrt{2}sin–1 (sin x –cos x) + C

D

2\sqrt{2}cos–1 (sin x + cos x) + C

Answer

2\sqrt{2}sin–1 (sin x –cos x) + C

Explanation

Solution

I = sinx+cosxcosxsinx\int_{}^{}\frac{\sin x + \cos x}{\sqrt{\cos x\sin x}}dx

Put sin x – cos x = t, so that (sin x + cos x) dx = dt and

1 – 2 sin

x cos x = t2

\ I = 2\sqrt{2} dt1t2\int_{}^{}\frac{dt}{\sqrt{1 - t^{2}}}= 2\sqrt{2}sin–1 (t) + C

= 2\sqrt { 2 }sin–1 (sin x – cos x) + C