Solveeit Logo

Question

Question: If I = \(\int_{}^{}\frac{x^{5}}{\sqrt{1 + x^{3}}}\)dx, then I is equal to:...

If I = x51+x3\int_{}^{}\frac{x^{5}}{\sqrt{1 + x^{3}}}dx, then I is equal to:

A

29\frac{2}{9} (1 + x3)5/2 + 23\frac{2}{3} (1+ x3)3/2 + C

B

29\frac{2}{9} (1 + x3)3/223\frac{2}{3} (1 + x3)1/2 + C

C

logx+1+x3\left| \sqrt{x} + \sqrt{1 + x^{3}} \right|+ C

D

x2 log (1 + x3) + C

Answer

29\frac{2}{9} (1 + x3)3/223\frac{2}{3} (1 + x3)1/2 + C

Explanation

Solution

Put 1 + x3 = t2, 3x2 dx = 2t dt, so that

I = . 23\frac{2}{3}t dt = 23\frac{2}{3} (t33t)\left( \frac{t^{3}}{3} - t \right)+ C

= 29\frac{2}{9} (1+ x3)3/223\frac{2}{3} (1 + x3)1/2 + C