Solveeit Logo

Question

Question: If I = \(\int_{}^{}\frac{\sqrt{x^{2} + 1}}{x^{4}}\)dx, then I equals...

If I = x2+1x4\int_{}^{}\frac{\sqrt{x^{2} + 1}}{x^{4}}dx, then I equals

A

13\frac { 1 } { 3 } (x2+1)3/2x3\frac{(x^{2} + 1)^{3/2}}{x^{3}}+ C

B

x3 (x2 + 1)–1/2 + C

C

x2+1x2\frac{\sqrt{x^{2} + 1}}{x^{2}}+ C

D

13\frac { 1 } { 3 } (x2+1)3/2x2\frac{(x^{2} + 1)^{3/2}}{x^{2}}+ C

Answer

\frac { 1 } { 3 }$$\frac{(x^{2} + 1)^{3/2}}{x^{3}}+ C

Explanation

Solution

Put x = tan q so that x2+1\sqrt{x^{2} + 1}= sec q , dx = sec2 q dq

\ I = secθsec2θtan4θ\int_{}^{}\frac{\sec\theta\sec^{2}\theta}{\tan^{4}\theta}dq = cosθsin4θ\int_{}^{}\frac{\cos\theta}{\sin^{4}\theta}dq

= – 13\frac { 1 } { 3 } 1sin3θ\frac{1}{\sin^{3}\theta}+ C

= – 13\frac { 1 } { 3 } (x2+1)3/2x3\frac{(x^{2} + 1)^{3/2}}{x^{3}}+ C