Question
Question: If I = \(\int_{}^{}\frac{\sqrt{x^{2} + 1}}{x^{4}}\)dx, then I equals...
If I = ∫x4x2+1dx, then I equals
A
– 31 x3(x2+1)3/2+ C
B
x3 (x2 + 1)–1/2 + C
C
x2x2+1+ C
D
–31 x2(x2+1)3/2+ C
Answer
– \frac { 1 } { 3 }$$\frac{(x^{2} + 1)^{3/2}}{x^{3}}+ C
Explanation
Solution
Put x = tan q so that x2+1= sec q , dx = sec2 q dq
\ I = ∫tan4θsecθsec2θdq = ∫sin4θcosθdq
= – 31 sin3θ1+ C
= – 31 x3(x2+1)3/2+ C