Question
Question: If I = \(\int_{}^{}\frac{dx}{\cos^{5}x + \sin^{5}x}\), then I equals...
If I = ∫cos5x+sin5xdx, then I equals
2log2−t2+t+ (2−b2)b31log b−tb+t + (2−b2)1b32
tan–1 (bt)+ C
5log5−t5+t+ 2+b21log b+tb−t + b32tan–1(bt)+ C
5log5+t5−t+ sin–1(bt)+ C
5log2+12−t+ sin–1(bt)+ (b32)tan–1where t = sin x – cos x and b = 51/4(bt)+ C
2log2−t2+t+ (2−b2)b31log b−tb+t + (2−b2)1b32
tan–1 (bt)+ C
Solution
cos5 x + sin5 x = (cos x + sin x) [cos4 x –cos3x sin x + cos2 x sin2 x –cos x sin3 x + sin4 x]
= (cos x + sin x) [(cos2x + sin2x)2 – cos2 x sin2 x – cos x sin x (cos2 x + sin2 x)]
= (cos x + sin x) (1 –cos x sin x – cos2 x sin2 x)
\ I = ∫(1+2sinxcosx)(1−cosxsinx–cos2xsin2x)sinx+cosxdx
Put sin x – cos x = t, so that (cos x + sin x) dx = dt, and t2 = 1 –2 sin x cos x
Thus
I = ∫(2−t2)[1−2t2−1−41(t2−1)2]dt
= 4
4 dt
= 2log 2−t2+t 2−51 53/41log 51/4−t51/4+t + 2+51 53/42
tan–1 (51/4t)+ C
where t = sin x – cos x