Solveeit Logo

Question

Question: If I = \(\int_{}^{}\frac{1}{e^{x}}\)tan<sup>–1</sup> (e<sup>x</sup>) dx, then I equals:...

If I = 1ex\int_{}^{}\frac{1}{e^{x}}tan–1 (ex) dx, then I equals:

A

– e–x tan–1 (ex) + log (1 + e2x) + CB

B

x – e–x tan –1 ex12\frac{1}{2}log (1 + ex) + C

C

x – e–x tan–1 (ex) –12\frac{1}{2}log (1 + e2x) + C

D

None of these

Answer

x – e–x tan–1 (ex) –12\frac{1}{2}log (1 + e2x) + C

Explanation

Solution

Put ex = t to get

I = tan–1 (t) dt

= (tan–1 t)

= –tan–1 t +

= –tan–1 t +

= –tan–1 t + lnt –12\frac { 1 } { 2 }ln (1+ t2) + C