Question
Question: If I = \(\int_{1}^{\infty}\frac{dx}{x^{2}\sqrt{1 + x}}\), then I equals...
If I = ∫1∞x21+xdx, then I equals
A
2+ log (2–1)
B
2–log (2–1)
C
log (2 + 1) + 2
D
2 + log (3 –2)
Answer
log (2 + 1) + 2
Explanation
Solution
Put 1 + x = t2, then
I = t1dt
Integrating by parts, we get
I = – (t2−1)t1]2∞– ∫2∞(t2−1)t2dt
= 21– ∫2∞[t2−11−t21]dt
= 21– (21logt+1t−1+t1)]2∞
= 21– 21log 1+1/t1−1/t]t=∞+ 0
+ 21log 2+12−1+21
= 2– log (2–1)