Solveeit Logo

Question

Question: If I = \(\int_{0}^{\pi}{e^{|\cos x|}\left\{ 2\sin\left( \frac{1}{2}\cos x \right) + 3\cos\left( \fra...

If I = 0πecosx{2sin(12cosx)+3cos(12cosx)}\int_{0}^{\pi}{e^{|\cos x|}\left\{ 2\sin\left( \frac{1}{2}\cos x \right) + 3\cos\left( \frac{1}{2}\cos x \right) \right\}} sin dx, then I equals

A

7e\sqrt{e}cos (1/2)

B

7e\sqrt{e} [cos (1/2) – sin (1/2)]

C

0

D

None of these

Answer

None of these

Explanation

Solution

Put 12\frac{1}{2}cos x = t, so that –sin x dx = 2dt and
I = 1/21/2et\int_{1/2}^{- 1/2}e^{|t|} (2 sin t + 3 cost) (–2) dt

As e|t| sin t is an odd function, and e|t| cos t is an even function,

I = 6 01/2etcostdt\int_{0}^{1/2}{e^{t}\cos tdt}= 6et cos t]01/2\rbrack_{0}^{1/2}+ 601/2etsintdt\int_{0}^{1/2}{e^{t}\sin tdt}

I = 6 [ecos(12)1]\left\lbrack \sqrt{e}\cos\left( \frac{1}{2} \right) - 1 \right\rbrack+ 6et sin t]01/2\rbrack_{0}^{1/2}– 6 01/2etcostdt\int_{0}^{1/2}{e^{t}\cos tdt}

Ž 7I = 6 e\sqrt { \mathrm { e } } (cos(12)+sin(12)1)\left( \cos\left( \frac{1}{2} \right) + \sin\left( \frac{1}{2} \right) - 1 \right)