Question
Question: If I = \(\int_{0}^{\pi}{e^{|\cos x|}\left\{ 2\sin\left( \frac{1}{2}\cos x \right) + 3\cos\left( \fra...
If I = ∫0πe∣cosx∣{2sin(21cosx)+3cos(21cosx)} sin dx, then I equals
A
7ecos (1/2)
B
7e [cos (1/2) – sin (1/2)]
C
0
D
None of these
Answer
None of these
Explanation
Solution
Put 21cos x = t, so that –sin x dx = 2dt and
I = ∫1/2−1/2e∣t∣ (2 sin t + 3 cost) (–2) dt
As e|t| sin t is an odd function, and e|t| cos t is an even function,
I = 6 ∫01/2etcostdt= 6et cos t]01/2+ 6∫01/2etsintdt
I = 6 [ecos(21)−1]+ 6et sin t]01/2– 6 ∫01/2etcostdt
Ž 7I = 6 e (cos(21)+sin(21)−1)