Solveeit Logo

Question

Question: If I = \(\int_{0}^{\infty}\frac{\sqrt{x}dx}{(1 + x)(2 + x)(3 + x)}\), then I equals-...

If I = 0xdx(1+x)(2+x)(3+x)\int_{0}^{\infty}\frac{\sqrt{x}dx}{(1 + x)(2 + x)(3 + x)}, then I equals-

A

π2\frac{\pi}{2} (22\sqrt{2}3\sqrt{3}–1)

B

π2\frac{\pi}{2} (22\sqrt{2}+ 3\sqrt{3}–1)

C

π2\frac{\pi}{2} (22\sqrt{2}3\sqrt{3}+1)

D

None of these

Answer

π2\frac{\pi}{2} (22\sqrt{2}3\sqrt{3}–1)

Explanation

Solution

Put x\sqrt{x}= t or x = t2, so that

I = 20t2(1+t2)(2+t2)(3+t2)\int_{0}^{\infty}\frac{t^{2}}{(1 + t^{2})(2 + t^{2})(3 + t^{2})}dt

= 0(11+t2+42+t233+t2)\int_{0}^{\infty}\left( - \frac{1}{1 + t^{2}} + \frac{4}{2 + t^{2}} - \frac{3}{3 + t^{2}} \right)dt

= (tan1t+42tan1(t2)33tan1(t3))]0\left. \ \left( - \tan^{- 1}t + \frac{4}{\sqrt{2}}\tan^{- 1}\left( \frac{t}{\sqrt{2}} \right) - \frac{3}{\sqrt{3}}\tan^{- 1}\left( \frac{t}{\sqrt{3}} \right) \right) \right\rbrack_{0}^{\infty}= –π2\frac{\pi}{2} + 22\sqrt { 2 } (π2)\left( \frac{\pi}{2} \right)3\sqrt { 3 } (π2)\left( \frac{\pi}{2} \right)

= π2\frac{\pi}{2} (22\sqrt{2}3\sqrt{3}–1)