Question
Question: If I = \(\int_{0}^{\infty}\frac{\sqrt{x}dx}{(1 + x)(2 + x)(3 + x)}\), then I equals-...
If I = ∫0∞(1+x)(2+x)(3+x)xdx, then I equals-
A
2π (22– 3–1)
B
2π (22+ 3–1)
C
2π (22– 3+1)
D
None of these
Answer
2π (22– 3–1)
Explanation
Solution
Put x= t or x = t2, so that
I = 2∫0∞(1+t2)(2+t2)(3+t2)t2dt
= ∫0∞(−1+t21+2+t24−3+t23)dt
= (−tan−1t+24tan−1(2t)−33tan−1(3t))]0∞= –2π + 22 (2π)– 3 (2π)
= 2π (22–3–1)