Solveeit Logo

Question

Question: If $I = \int_{0}^{2\pi} \sin^2x dx$, then...

If I=02πsin2xdxI = \int_{0}^{2\pi} \sin^2x dx, then

A

I=20πsin2xdxI = 2\int_{0}^{\pi} \sin^2x dx

B

I=40π/2sin2xdxI = 4\int_{0}^{\pi/2} \sin^2x dx

C

I=02πcos2xdxI = \int_{0}^{2\pi} \cos^2x dx

D

I=80π/4sin2xdxI = 8\int_{0}^{\pi/4} \sin^2x dx

Answer

I = 2\int_{0}^{\pi} sin^2x dx, I = 4\int_{0}^{\pi/2} sin^2x dx, I = \int_{0}^{2\pi} cos^2x dx

Explanation

Solution

The problem asks us to identify the correct statements regarding the integral I=02πsin2xdxI = \int_{0}^{2\pi} \sin^2x dx.

First, let's evaluate the integral II: We use the trigonometric identity sin2x=1cos(2x)2\sin^2x = \frac{1 - \cos(2x)}{2}. I=02π1cos(2x)2dxI = \int_{0}^{2\pi} \frac{1 - \cos(2x)}{2} dx I=12[xsin(2x)2]02πI = \frac{1}{2} \left[ x - \frac{\sin(2x)}{2} \right]_{0}^{2\pi} I=12[(2πsin(4π)2)(0sin(0)2)]I = \frac{1}{2} \left[ \left( 2\pi - \frac{\sin(4\pi)}{2} \right) - \left( 0 - \frac{\sin(0)}{2} \right) \right] Since sin(4π)=0\sin(4\pi) = 0 and sin(0)=0\sin(0) = 0: I=12[(2π0)(00)]=12(2π)=πI = \frac{1}{2} \left[ (2\pi - 0) - (0 - 0) \right] = \frac{1}{2} (2\pi) = \pi So, I=πI = \pi.

Now, let's check each given option:

Option 1: I=20πsin2xdxI = 2\int_{0}^{\pi} \sin^2x dx We use the property of definite integrals: 02af(x)dx=20af(x)dx\int_{0}^{2a} f(x) dx = 2\int_{0}^{a} f(x) dx if f(2ax)=f(x)f(2a-x) = f(x). Here, f(x)=sin2xf(x) = \sin^2x and 2a=2π2a = 2\pi, so a=πa = \pi. Let's check f(2πx)f(2\pi-x): f(2πx)=sin2(2πx)=(sinx)2=sin2x=f(x)f(2\pi-x) = \sin^2(2\pi-x) = (-\sin x)^2 = \sin^2x = f(x). Since f(2πx)=f(x)f(2\pi-x) = f(x), the property applies. Therefore, I=02πsin2xdx=20πsin2xdxI = \int_{0}^{2\pi} \sin^2x dx = 2\int_{0}^{\pi} \sin^2x dx. This option is correct.

Option 2: I=40π/2sin2xdxI = 4\int_{0}^{\pi/2} \sin^2x dx From Option 1, we have I=20πsin2xdxI = 2\int_{0}^{\pi} \sin^2x dx. Now, consider the integral 0πsin2xdx\int_{0}^{\pi} \sin^2x dx. We apply the same property again: 02af(x)dx=20af(x)dx\int_{0}^{2a} f(x) dx = 2\int_{0}^{a} f(x) dx if f(2ax)=f(x)f(2a-x) = f(x). Here, f(x)=sin2xf(x) = \sin^2x and 2a=π2a = \pi, so a=π/2a = \pi/2. Let's check f(πx)f(\pi-x): f(πx)=sin2(πx)=(sinx)2=sin2x=f(x)f(\pi-x) = \sin^2(\pi-x) = (\sin x)^2 = \sin^2x = f(x). Since f(πx)=f(x)f(\pi-x) = f(x), the property applies. Thus, 0πsin2xdx=20π/2sin2xdx\int_{0}^{\pi} \sin^2x dx = 2\int_{0}^{\pi/2} \sin^2x dx. Substitute this back into the expression for II: I=2(20π/2sin2xdx)=40π/2sin2xdxI = 2 \left( 2\int_{0}^{\pi/2} \sin^2x dx \right) = 4\int_{0}^{\pi/2} \sin^2x dx. This option is correct.

Option 3: I=02πcos2xdxI = \int_{0}^{2\pi} \cos^2x dx Let's evaluate 02πcos2xdx\int_{0}^{2\pi} \cos^2x dx. We use the trigonometric identity cos2x=1+cos(2x)2\cos^2x = \frac{1 + \cos(2x)}{2}. 02πcos2xdx=02π1+cos(2x)2dx\int_{0}^{2\pi} \cos^2x dx = \int_{0}^{2\pi} \frac{1 + \cos(2x)}{2} dx =12[x+sin(2x)2]02π= \frac{1}{2} \left[ x + \frac{\sin(2x)}{2} \right]_{0}^{2\pi} =12[(2π+sin(4π)2)(0+sin(0)2)]= \frac{1}{2} \left[ \left( 2\pi + \frac{\sin(4\pi)}{2} \right) - \left( 0 + \frac{\sin(0)}{2} \right) \right] =12[(2π+0)(0+0)]=12(2π)=π= \frac{1}{2} \left[ (2\pi + 0) - (0 + 0) \right] = \frac{1}{2} (2\pi) = \pi Since I=πI = \pi and 02πcos2xdx=π\int_{0}^{2\pi} \cos^2x dx = \pi, this option is correct. Alternatively, we know sin2x+cos2x=1\sin^2x + \cos^2x = 1. 02π(sin2x+cos2x)dx=02π1dx=[x]02π=2π\int_{0}^{2\pi} (\sin^2x + \cos^2x) dx = \int_{0}^{2\pi} 1 dx = [x]_{0}^{2\pi} = 2\pi. So, 02πsin2xdx+02πcos2xdx=2π\int_{0}^{2\pi} \sin^2x dx + \int_{0}^{2\pi} \cos^2x dx = 2\pi. I+02πcos2xdx=2πI + \int_{0}^{2\pi} \cos^2x dx = 2\pi. Since I=πI = \pi, we have π+02πcos2xdx=2π\pi + \int_{0}^{2\pi} \cos^2x dx = 2\pi, which implies 02πcos2xdx=π\int_{0}^{2\pi} \cos^2x dx = \pi. Thus, I=02πcos2xdxI = \int_{0}^{2\pi} \cos^2x dx.

Option 4: I=80π/4sin2xdxI = 8\int_{0}^{\pi/4} \sin^2x dx Let's evaluate 80π/4sin2xdx8\int_{0}^{\pi/4} \sin^2x dx: 80π/41cos(2x)2dx=40π/4(1cos(2x))dx8\int_{0}^{\pi/4} \frac{1 - \cos(2x)}{2} dx = 4\int_{0}^{\pi/4} (1 - \cos(2x)) dx =4[xsin(2x)2]0π/4= 4 \left[ x - \frac{\sin(2x)}{2} \right]_{0}^{\pi/4} =4[(π4sin(π/2)2)(0sin(0)2)]= 4 \left[ \left( \frac{\pi}{4} - \frac{\sin(\pi/2)}{2} \right) - \left( 0 - \frac{\sin(0)}{2} \right) \right] =4[(π412)(00)]= 4 \left[ \left( \frac{\pi}{4} - \frac{1}{2} \right) - (0 - 0) \right] =4(π412)=π2= 4 \left( \frac{\pi}{4} - \frac{1}{2} \right) = \pi - 2 Since I=πI = \pi and π2π\pi - 2 \neq \pi, this option is incorrect.

All options 1, 2, and 3 are correct.