Question
Question: If $I = \int_{0}^{2\pi} \sin^2x dx$, then...
If I=∫02πsin2xdx, then

I=2∫0πsin2xdx
I=4∫0π/2sin2xdx
I=∫02πcos2xdx
I=8∫0π/4sin2xdx
I = 2\int_{0}^{\pi} sin^2x dx, I = 4\int_{0}^{\pi/2} sin^2x dx, I = \int_{0}^{2\pi} cos^2x dx
Solution
The problem asks us to identify the correct statements regarding the integral I=∫02πsin2xdx.
First, let's evaluate the integral I: We use the trigonometric identity sin2x=21−cos(2x). I=∫02π21−cos(2x)dx I=21[x−2sin(2x)]02π I=21[(2π−2sin(4π))−(0−2sin(0))] Since sin(4π)=0 and sin(0)=0: I=21[(2π−0)−(0−0)]=21(2π)=π So, I=π.
Now, let's check each given option:
Option 1: I=2∫0πsin2xdx We use the property of definite integrals: ∫02af(x)dx=2∫0af(x)dx if f(2a−x)=f(x). Here, f(x)=sin2x and 2a=2π, so a=π. Let's check f(2π−x): f(2π−x)=sin2(2π−x)=(−sinx)2=sin2x=f(x). Since f(2π−x)=f(x), the property applies. Therefore, I=∫02πsin2xdx=2∫0πsin2xdx. This option is correct.
Option 2: I=4∫0π/2sin2xdx From Option 1, we have I=2∫0πsin2xdx. Now, consider the integral ∫0πsin2xdx. We apply the same property again: ∫02af(x)dx=2∫0af(x)dx if f(2a−x)=f(x). Here, f(x)=sin2x and 2a=π, so a=π/2. Let's check f(π−x): f(π−x)=sin2(π−x)=(sinx)2=sin2x=f(x). Since f(π−x)=f(x), the property applies. Thus, ∫0πsin2xdx=2∫0π/2sin2xdx. Substitute this back into the expression for I: I=2(2∫0π/2sin2xdx)=4∫0π/2sin2xdx. This option is correct.
Option 3: I=∫02πcos2xdx Let's evaluate ∫02πcos2xdx. We use the trigonometric identity cos2x=21+cos(2x). ∫02πcos2xdx=∫02π21+cos(2x)dx =21[x+2sin(2x)]02π =21[(2π+2sin(4π))−(0+2sin(0))] =21[(2π+0)−(0+0)]=21(2π)=π Since I=π and ∫02πcos2xdx=π, this option is correct. Alternatively, we know sin2x+cos2x=1. ∫02π(sin2x+cos2x)dx=∫02π1dx=[x]02π=2π. So, ∫02πsin2xdx+∫02πcos2xdx=2π. I+∫02πcos2xdx=2π. Since I=π, we have π+∫02πcos2xdx=2π, which implies ∫02πcos2xdx=π. Thus, I=∫02πcos2xdx.
Option 4: I=8∫0π/4sin2xdx Let's evaluate 8∫0π/4sin2xdx: 8∫0π/421−cos(2x)dx=4∫0π/4(1−cos(2x))dx =4[x−2sin(2x)]0π/4 =4[(4π−2sin(π/2))−(0−2sin(0))] =4[(4π−21)−(0−0)] =4(4π−21)=π−2 Since I=π and π−2=π, this option is incorrect.
All options 1, 2, and 3 are correct.