Solveeit Logo

Question

Question: If I = \(\int_{- 2}^{0}{\lbrack x^{3} + 3x^{2} + 3x + (x + 1)\cos(x + 1)\rbrack}dx\), then I equals:...

If I = 20[x3+3x2+3x+(x+1)cos(x+1)]dx\int_{- 2}^{0}{\lbrack x^{3} + 3x^{2} + 3x + (x + 1)\cos(x + 1)\rbrack}dx, then I equals:

A

–4

B

–3

C

–2

D

–1

Answer

–2

Explanation

Solution

We can write

I =20[(x+1)31+(x+1)cos(x+1)]dx\int_{- 2}^{0}{\lbrack(x + 1)^{3} - 1 + (x + 1)\cos(x + 1)\rbrack}dx

Put x + 1= t, so that

I = 11[t31+tcost]dt\int_{- 1}^{1}{\lbrack t^{3} - 1 + t\cos t\rbrack}dt

= 11(1)dt\int_{- 1}^{1}{( - 1)}dt = – t]11\rbrack_{- 1}^{1}= –2

as t3 + t cos t is an odd function