Question
Mathematics Question on Methods of Integration
If I=∫1+x3x5dx , then I is equal to
A
92(1+x3)25+32(1+x3)23+C
B
logx+1+x3+C
C
logx−1+x3+C
D
92(1+x3)23−32(1+x3)21+C
Answer
92(1+x3)23−32(1+x3)21+C
Explanation
Solution
I=∫1+x3x5dx=∫1.+x3x3.x2dx
Let1+x3=t2,sothat3x2dx=2tdt
⇒x2dx=32tdt
∴I=∫t(t2−1)32tdt=32∫t2−1)dt
=32(3t3−t)+C=32[3(1+x3)3/2−(1+x3)21]+C
=92(1+x3)3/2−32(1+x3)1/2+C