Solveeit Logo

Question

Mathematics Question on Methods of Integration

If I=x51+x3dxI =\int\frac{x^{5}}{\sqrt{1+x^{3}}}dx , then I is equal to

A

29(1+x3)52+23(1+x3)32+C\frac{2}{9}\left(1+x^{3}\right)^{\frac{5}{2}}+\frac{2}{3}\left(1+x^{3}\right)^{\frac{3}{2}}+C

B

logx+1+x3+Clog\left|\sqrt{x}+\sqrt{1+x^{3}}\right|+C

C

logx1+x3+Clog\left|\sqrt{x}-\sqrt{1+x^{3}}\right|+C

D

29(1+x3)3223(1+x3)12+C\frac{2}{9}\left(1+x^{3}\right)^{\frac{3}{2}}-\frac{2}{3}\left(1+x^{3}\right)^{\frac{1}{2}}+C

Answer

29(1+x3)3223(1+x3)12+C\frac{2}{9}\left(1+x^{3}\right)^{\frac{3}{2}}-\frac{2}{3}\left(1+x^{3}\right)^{\frac{1}{2}}+C

Explanation

Solution

I=x51+x3dx=x3.x21.+x3dxI =\int\frac{x^{5}}{\sqrt{1+x^{3}}}dx=\int \frac{x^{3}.x^{2}}{\sqrt{1^{.}+x^{3}}}dx
Let1+x3=t2,sothat3x2dx=2tdtLet 1 + x^{3} = t^{2}, so that 3x^{2} dx = 2t dt
x2dx=23tdt\Rightarrow x^{2} dx = \frac{2}{3}td t
I=(t21)23tdtt=23t21)dt\therefore I =\int\frac{\left(t^{2}-1\right)\frac{2}{3}t dt}{t}=\frac{2}{3}\int t^{2} -1)dt
=23(t33t)+C=23[(1+x3)3/23(1+x3)12]+C=\frac{2}{3}\left(\frac{t^{3}}{3}-t\right)+C =\frac{2}{3}\left[\frac{\left(1+x^{3}\right)^{3/2}}{3}-\left(1+x^{3}\right)^{\frac{1}{2}}\right]+C
=29(1+x3)3/223(1+x3)1/2+C=\frac{2}{9}\left(1+x^{3}\right)^{3/2}-\frac{2}{3}\left(1+x^{3}\right)^{1/2}+C