Solveeit Logo

Question

Mathematics Question on Integration by Parts

If I=∫x2dx(xsinx+cosx)2\frac{x^2dx}{(x\,sin\,x+cos\,x)^2}=f(x)+tan x+c, then f(x) is

A

sinxxsinx+cosx\frac{sin\,x}{xsin\,x+cos\,x}

B

1(xsinx+cosx)2\frac{1}{(xsin\,x+cos\,x)^2}

C

xcosx(xsinx+cosx)\frac{-x}{cos\,x(xsin\,x+cos\,x)}

D

1sinx(xcosx+sinx)\frac{1}{sin\,x(xcos\,x+sin\,x)}

Answer

xcosx(xsinx+cosx)\frac{-x}{cos\,x(xsin\,x+cos\,x)}

Explanation

Solution

The correct answer is option (C): xcosx(xsinx+cosx)\frac{-x}{cos\,x(xsin\,x+cos\,x)}