Question
Mathematics Question on Matrices
If (i) A=[cosα −sinαsinαcosα],then verify that A'A=I
(ii) A= [sinα −cosαcosαsinα],then verify that A'A=I
(i) A= [cosα −sinαsinαcosα]
∴A′= [cosα sinα−sinαcosα]
A'A= [cosα sinα−sinαcosα] [cosα −sinαsinαcosα]
= [(cosα)(cosα)+(−sinα)(−sinα) (sinα)(cosα)+(cosα)(−sinα)(cosα)(sinα)+(−sinα)(cosα)(sinα)(sinα)+(cosα)(cosα)]
= [cos2α+sin2α sinαcosα−sinαcosαsinαcosα−sinαcosαsin2α+cos2α]
= [1 001]=I
Hence we verified that: A'A=I
(ii) [sinα −cosαcosαsinα]
so A'= [sinα cosα−cosαsinα]
A'A= \begin{bmatrix} \sin\alpha & -\cos\alpha\\\ \cos\alpha & \sin\alpha \end{bmatrix}$$\begin{bmatrix} \sin\alpha & \cos\alpha\\\ -\cos\alpha & \sin\alpha \end{bmatrix}
= [(sinα)(sinα)+(−cosα)(−cosα) (cosα)(sinα)+(sinα)(−cosα)(sinα)(cosα)+(−cosα)(sinα)(cosα)(cosα)+(sinα)(sinα)]
= [sin2αcos2α sinαcosα−sinαcosαsinαcosα−sinαcosαcos2α+sin2α]
= [1 001]=I
Hence we verified that: A′A=I