Solveeit Logo

Question

Mathematics Question on Matrices

If (i) A=[cosαsinα sinαcosα]\begin{bmatrix} \cos\alpha & \sin\alpha\\\ -\sin\alpha & \cos\alpha \end{bmatrix},then verify that A'A=I
(ii) A= [sinαcosα cosαsinα]\begin{bmatrix} \sin\alpha & \cos\alpha\\\ -\cos \alpha & \sin\alpha \end{bmatrix},then verify that A'A=I

Answer

(i) A=A= [cosαsinα sinαcosα]\begin{bmatrix} \cos\alpha & \sin\alpha\\\ -\sin\alpha & \cos\alpha \end{bmatrix}

A=\therefore A'= [cosαsinα sinαcosα]\begin{bmatrix} \cos\alpha & -\sin\alpha\\\ \sin\alpha & \cos\alpha \end{bmatrix}

A'A= [cosαsinα sinαcosα]\begin{bmatrix} \cos\alpha & -\sin\alpha\\\ \sin\alpha & \cos\alpha \end{bmatrix} [cosαsinα sinαcosα]\begin{bmatrix} \cos\alpha & \sin\alpha\\\ -\sin\alpha & \cos\alpha \end{bmatrix}

= [(cosα)(cosα)+(sinα)(sinα)(cosα)(sinα)+(sinα)(cosα) (sinα)(cosα)+(cosα)(sinα)(sinα)(sinα)+(cosα)(cosα)]\begin{bmatrix} (\cos\alpha) (cos\alpha) + (- \sin\alpha)( -\sin\alpha) & (\cos\alpha)(\sin\alpha)+(-\sin\alpha)(\cos\alpha)\\\ (\sin\alpha)(\cos\alpha)+(\cos\alpha)(-\sin\alpha) & (\sin\alpha)(\sin\alpha)+(\cos\alpha)(\cos\alpha) \end{bmatrix}

= [cos2α+sin2αsinαcosαsinαcosα  sinαcosαsinαcosαsin2α+cos2α]\begin{bmatrix} \cos^2α+\sin^2α & \sinα\cosα-\sinα\cosα\\\ \ sinα\cosα-\sinα\cosα & \sin^2α+\cos^2α \end{bmatrix}

= [10 01]=I\begin{bmatrix} 1 & 0\\\ 0 & 1 \end{bmatrix}= I

Hence we verified that: A'A=I

(ii) [sinαcosα cosαsinα]\begin{bmatrix} \sin\alpha & \cos\alpha\\\ -\cos\alpha & \sin\alpha \end{bmatrix}

so A'= [sinαcosα cosαsinα]\begin{bmatrix} \sin\alpha & -\cos\alpha\\\ \cos\alpha & \sin\alpha \end{bmatrix}

A'A= \begin{bmatrix} \sin\alpha & -\cos\alpha\\\ \cos\alpha & \sin\alpha \end{bmatrix}$$\begin{bmatrix} \sin\alpha & \cos\alpha\\\ -\cos\alpha & \sin\alpha \end{bmatrix}

= [(sinα)(sinα)+(cosα)(cosα)(sinα)(cosα)+(cosα)(sinα) (cosα)(sinα)+(sinα)(cosα)(cosα)(cosα)+(sinα)(sinα)]\begin{bmatrix} (\sin\alpha)(\sin\alpha)+(-\cos\alpha)(-\cos\alpha) & (\sin\alpha)(\cos\alpha)+(-\cos\alpha)(\sin\alpha)\\\ (\cos\alpha)(\sin\alpha)+(\sin\alpha)(-\cos\alpha) & (\cos\alpha)(\cos\alpha)+(\sin\alpha)(\sin\alpha) \end{bmatrix}

= [sin2αcos2αsinαcosαsinαcosα sinαcosαsinαcosαcos2α+sin2α]\begin{bmatrix} \sin^2α\cos^2α & \sinα\cosα-\sin\alpha\cos\alpha & \\\ \sinα\cosα-\sinα\cosα & \cos^2α+\sin^2α \end{bmatrix}

= [10 01]=I\begin{bmatrix} 1 & 0\\\ 0 & 1 \end{bmatrix}= I

Hence we verified that: AA=IA'A=I