Solveeit Logo

Question

Mathematics Question on integral

If I1=ee2dxlogxI_1=\int\limits_{e} ^{_e2}\frac{dx}{\log\,x} and I2=12exxdxI_2=\int\limits_{1} ^{2}\frac{e^x}{x}dx , then

A

I1=I2I_1=I_2

B

2I1=I22I_1=I_2

C

I1=2I2I_1=2I_2

D

none of these.

Answer

I1=I2I_1=I_2

Explanation

Solution

I=ee2dxlogxI=\int\limits_{e}^{e^2} \frac{dx}{log\,x} Put log x=zx=z, x=ez\therefore x=e^{z} dx=ezdz\therefore dx=e^{z} dz When x=e,z=loge=1x = e, z = log e = 1 x=e2,z=loge2=2loge=2x=e^{2}, z=log\,e^{2}=2 \,log e=2 I1=12ezdzz=12exzdx=I2\therefore I_{1}=\int\limits_{1}^{2} \frac{e^{z}dz}{z}=\int\limits_{1}^{2} \frac{e^{x}}{z} dx=I_{2} I1=I2\therefore I_{1}=I_{2}