Question
Mathematics Question on Integrals of Some Particular Functions
If I1=∫02πf(sin2x)sinxdx and I2=∫0π/4f(cos2x)cosxdxthenI1/I2 =
A
1
B
2
C
21
D
2
Answer
2
Explanation
Solution
The correct option is(B): √2.
Given I1=0∫π/2f(sin2x)sinxdx
⇒I1=0∫π/2f(sin2x)cosxdx
(∵0∫af(x)dx=0∫af(a−x)dx]
⇒2I1=0∫π/2f(sin2x)(sinx)+cosx)dx
=20∫π/2f(sin2x)cos(x−4π)dx
Put x−4π=t
⇒dx=dt
∴2I1=2−π/4∫π/4f(sin(2π+2t))costdt
∴2I1=220∫π/4f(cos2t)costdt
⇒I1=20∫π/4f(cos2x)cosxdx
⇒I1=2