Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

If I1=0π2f(sin2x)sinxdxI_{1}=\int_{0}^{\frac{\pi}{2}} f (sin \,2x)sin \,xdx and I2=0π/4f(cos2x)cosxdxthenI1/I2I_2 = \int^{\pi/4}_{0}\,f(cos2x) cosx \,dx\,then\, I_1/I_2 =

A

11

B

2\sqrt{2}

C

12\frac{1}{\sqrt{2}}

D

22

Answer

2\sqrt{2}

Explanation

Solution

The correct option is(B): √2.

Given I1=0π/2f(sin2x)sinxdxI_1 = \int\limits_0^{\pi/2} f(sin\,2x) sin\,x dx
I1=0π/2f(sin2x)cosxdx\Rightarrow I_1 = \int\limits_0^{\pi/2} f(sin\,2x) cos\,x dx
(0af(x)dx=0af(ax)dx](\because \int\limits_0^a f(x) dx = \int\limits_0^a f( a-x) dx ]
2I1=0π/2f(sin2x)(sinx)+cosx)dx\Rightarrow 2I_1 = \int\limits_0^{\pi/2} f(sin\,2x)(sin\,x) + cos\,x )dx
=20π/2f(sin2x)cos(xπ4)dx= \sqrt{2} \int\limits_0^{\pi/2} f(sin\,2x) cos(x - \frac{\pi}{4})dx
Put xπ4=tx - \frac{\pi}{4} = t
dx=dt\Rightarrow dx = dt
2I1=2π/4π/4f(sin(π2+2t))costdt\therefore 2I_1 = \sqrt{2} \int\limits_{-\pi/4}^{\pi/4} f(sin (\frac{\pi}{2} + 2t)) cos\,t \,dt
2I1=220π/4f(cos2t)costdt\therefore 2I_1 = 2\sqrt{2}\int\limits_0^{\pi/4} f(cos\,2t) cos\,t\,dt
I1=20π/4f(cos2x)cosxdx\Rightarrow I_1 = \sqrt{2}\int\limits_0^{\pi/4} f(cos\,2x) \,cos\,x\,dx
I1=2\Rightarrow I_1 = \sqrt{2}