Solveeit Logo

Question

Question: If \(i - 1\) then \(- i\)...

If i1i - 1 then i- i

A

1

B

2

C

nn

D

(i1i+1)n\left( \frac{i - 1}{i + 1} \right)^{n}

Answer

nn

Explanation

Solution

Given that y=1y = - 1, therefore

xx

=(1+b)2a2+2ia(1+b)1+b2+2b+a2= \frac { ( 1 + b ) ^ { 2 } - a ^ { 2 } + 2 i a ( 1 + b ) } { 1 + b ^ { 2 } + 2 b + a ^ { 2 } } z1z_{1}

z2z_{2}

Trick : Put (z1z2)=Re(z1)Re(z2)Im(z1)Im(z2)(z_{1}z_{2}) = {Re}(z_{1}){Re}(z_{2}) - {Im}(z_{1}){Im}(z_{2}), (112i+31+i)(3+4i24i)\left( \frac{1}{1 - 2i} + \frac{3}{1 + i} \right)\left( \frac{3 + 4i}{2 - 4i} \right)

But options (1) and (3) give 1.

So again put =[1+2i12+22+33i12+12][616+12i+8i22+42]= \left\lbrack \frac{1 + 2i}{1^{2} + 2^{2}} + \frac{3 - 3i}{1^{2} + 1^{2}} \right\rbrack\left\lbrack \frac{6 - 16 + 12i + 8i}{2^{2} + 4^{2}} \right\rbrack.

Which gives (3) only.