Solveeit Logo

Question

Question: If hyperbola \(\frac{x^{2}}{b^{2}} - \frac{y^{2}}{a^{2}}\) = 1 passes through the focus of ellipse \...

If hyperbola x2b2y2a2\frac{x^{2}}{b^{2}} - \frac{y^{2}}{a^{2}} = 1 passes through the focus of ellipse x2a2+y2b2\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1 then eccentricity of hyperbola is-

A

2\sqrt{2}

B

23\frac{2}{\sqrt{3}}

C

3\sqrt{3}

D

None of these

Answer

3\sqrt{3}

Explanation

Solution

Let e1 & e2 are the eccentricity of ellipse & hyperbola

Q b = ae1 …(1)

b2 = a2 (1 – e12e_{1}^{2}) …(2)

a2 = b2 (e22e_{2}^{2} – 1) …(3)

From (1) & (2) 2e12e_{1}^{2} = 1 Ю e1 = 1/2\sqrt{2}

From (1) & (3) 2 = e22e_{2}^{2} – 1 Ю e2 = 3\sqrt{3}