Solveeit Logo

Question

Question: If $h(x) = \underset{n \to \infty}{Lt} \frac{x^{n}f(x)+g(x)+3}{2x^{n}+4x+1}, x \neq 1$ and $h(1) = e...

If h(x)=Ltnxnf(x)+g(x)+32xn+4x+1,x1h(x) = \underset{n \to \infty}{Lt} \frac{x^{n}f(x)+g(x)+3}{2x^{n}+4x+1}, x \neq 1 and h(1)=e2h(1) = e^2 and given that f(x),g(x),h(x)f(x), g(x), h(x) are continuous functions at x=1x = 1, then which of the following is/are correct?

A

f(1) = 2e²

B

f(1)=e22f(1) = \frac{e^2}{2}

C

g(1)=Ae2+Bg(1) = Ae^2 + B where A+B=2A + B = 2

D

[g(1)]=33[g(1)] = 33 ([.]is GIF)

Answer

f(1) = 2e², g(1) = Ae² + B where A + B = 2, [g(1)] = 33

Explanation

Solution

To solve this problem, we need to utilize the concept of continuity of functions and the evaluation of limits involving xnx^n as nn \to \infty.

Given:

  1. h(x)=Ltnxnf(x)+g(x)+32xn+4x+1h(x) = \underset{n \to \infty}{Lt} \frac{x^{n}f(x)+g(x)+3}{2x^{n}+4x+1}, for x1x \neq 1.
  2. h(1)=e2h(1) = e^2.
  3. f(x)f(x), g(x)g(x), and h(x)h(x) are continuous functions at x=1x = 1.

The continuity of h(x)h(x) at x=1x=1 implies that Ltx1h(x)=h(1)\underset{x \to 1}{Lt} h(x) = h(1).
For the limit to exist, the left-hand limit (LHL) and the right-hand limit (RHL) at x=1x=1 must be equal to h(1)h(1).
Ltx1h(x)=Ltx1+h(x)=h(1)=e2\underset{x \to 1^-}{Lt} h(x) = \underset{x \to 1^+}{Lt} h(x) = h(1) = e^2.

Let's evaluate h(x)h(x) for different cases of xx as nn \to \infty:

Case 1: For x(0,1)x \in (0, 1) (used for LHL at x=1x=1)
When 0<x<10 < x < 1, as nn \to \infty, xn0x^n \to 0.
So, for x(0,1)x \in (0, 1), the expression for h(x)h(x) becomes:
h(x)=0f(x)+g(x)+320+4x+1=g(x)+34x+1h(x) = \frac{0 \cdot f(x) + g(x) + 3}{2 \cdot 0 + 4x + 1} = \frac{g(x) + 3}{4x + 1}

Now, we find the left-hand limit of h(x)h(x) as x1x \to 1^-:
Ltx1h(x)=Ltx1g(x)+34x+1\underset{x \to 1^-}{Lt} h(x) = \underset{x \to 1^-}{Lt} \frac{g(x) + 3}{4x + 1}
Since g(x)g(x) is continuous at x=1x=1, Ltx1g(x)=g(1)\underset{x \to 1^-}{Lt} g(x) = g(1).
So, Ltx1h(x)=g(1)+34(1)+1=g(1)+35\underset{x \to 1^-}{Lt} h(x) = \frac{g(1) + 3}{4(1) + 1} = \frac{g(1) + 3}{5}.

By continuity of h(x)h(x) at x=1x=1:
g(1)+35=h(1)=e2\frac{g(1) + 3}{5} = h(1) = e^2
g(1)+3=5e2g(1) + 3 = 5e^2
g(1)=5e23g(1) = 5e^2 - 3

Case 2: For x>1x > 1 (used for RHL at x=1x=1)
When x>1x > 1, as nn \to \infty, xnx^n \to \infty.
To evaluate the limit, we divide the numerator and denominator by xnx^n:
h(x)=Ltnxnf(x)xn+g(x)xn+3xn2xnxn+4xxn+1xn=Ltnf(x)+g(x)xn+3xn2+4xxn+1xnh(x) = \underset{n \to \infty}{Lt} \frac{\frac{x^{n}f(x)}{x^n} + \frac{g(x)}{x^n} + \frac{3}{x^n}}{\frac{2x^{n}}{x^n} + \frac{4x}{x^n} + \frac{1}{x^n}} = \underset{n \to \infty}{Lt} \frac{f(x) + \frac{g(x)}{x^n} + \frac{3}{x^n}}{2 + \frac{4x}{x^n} + \frac{1}{x^n}}
As nn \to \infty, g(x)xn0\frac{g(x)}{x^n} \to 0, 3xn0\frac{3}{x^n} \to 0, 4xxn0\frac{4x}{x^n} \to 0, 1xn0\frac{1}{x^n} \to 0.
So, for x>1x > 1, h(x)=f(x)2h(x) = \frac{f(x)}{2}.

Now, we find the right-hand limit of h(x)h(x) as x1+x \to 1^+:
Ltx1+h(x)=Ltx1+f(x)2\underset{x \to 1^+}{Lt} h(x) = \underset{x \to 1^+}{Lt} \frac{f(x)}{2}
Since f(x)f(x) is continuous at x=1x=1, Ltx1+f(x)=f(1)\underset{x \to 1^+}{Lt} f(x) = f(1).
So, Ltx1+h(x)=f(1)2\underset{x \to 1^+}{Lt} h(x) = \frac{f(1)}{2}.

By continuity of h(x)h(x) at x=1x=1:
f(1)2=h(1)=e2\frac{f(1)}{2} = h(1) = e^2
f(1)=2e2f(1) = 2e^2

Now let's check the given options:

  • f(1) = 2e²
    Our calculated value for f(1)f(1) is 2e22e^2. So, this option is correct.

  • f(1)=e22f(1) = \frac{e^2}{2}
    This contradicts our calculated value for f(1)f(1). So, this option is incorrect.

  • g(1)=Ae2+Bg(1) = Ae^2 + B where A+B=2A + B = 2
    Our calculated value for g(1)g(1) is 5e235e^2 - 3.
    Comparing 5e235e^2 - 3 with Ae2+BAe^2 + B, we get A=5A=5 and B=3B=-3.
    Then A+B=5+(3)=2A+B = 5 + (-3) = 2.
    This satisfies the condition A+B=2A+B=2. So, this option is correct.

  • [g(1)]=33[g(1)] = 33 ([.] is GIF)
    We have g(1)=5e23g(1) = 5e^2 - 3.
    Using the approximate value of e2.71828e \approx 2.71828:
    e2(2.71828)27.389056e^2 \approx (2.71828)^2 \approx 7.389056
    g(1)5(7.389056)3g(1) \approx 5(7.389056) - 3
    g(1)36.945283g(1) \approx 36.94528 - 3
    g(1)33.94528g(1) \approx 33.94528
    The greatest integer function (GIF) of g(1)g(1) is [33.94528]=33[33.94528] = 33.
    So, this option is correct.

Therefore, options 1, 3, and 4 are correct.

Explanation of the solution:

The problem uses the concept of continuity, where the limit of the function at a point must equal the function's value at that point. The limit definition of h(x)h(x) depends on the value of xx relative to 1.

  1. For x1x \to 1^-, xn0x^n \to 0, simplifying h(x)h(x) to g(x)+34x+1\frac{g(x)+3}{4x+1}. Using continuity of g(x)g(x) and h(x)h(x) at x=1x=1, we find g(1)=5e23g(1) = 5e^2-3.
  2. For x1+x \to 1^+, xnx^n \to \infty, simplifying h(x)h(x) to f(x)2\frac{f(x)}{2} by dividing numerator and denominator by xnx^n. Using continuity of f(x)f(x) and h(x)h(x) at x=1x=1, we find f(1)=2e2f(1) = 2e^2.
  3. These values are then used to check the given options for correctness.