Solveeit Logo

Question

Mathematics Question on Vectors

If i^+j^,j^+k^,i^+k^ \hat{i} + \hat{j}, \hat{j} + \hat{k}, \hat{i} + \hat{k} are the position vectors of the vertices of a triangle ABCABC taken in order, then A\angle A is equal to

A

π2\frac{\pi}{2}

B

π5\frac{\pi}{5}

C

π6\frac{\pi}{6}

D

π3\frac{\pi}{3}

Answer

π3\frac{\pi}{3}

Explanation

Solution

Now , AC=k^j^\vec{AC} = \hat{k} - \hat{j} and AB=k^i^\vec{AB} = \hat{k} - \hat{i}
Let θ\theta be the angle between AC\vec{AC} and AB\vec{AB} .
cosθ=100+022=12\cos\theta = \frac{1-0-0+0}{\sqrt{2} \sqrt{2}} = \frac{1}{2}
θ=60=π3\Rightarrow \theta = 60^{\circ} = \frac{\pi}{3}