Solveeit Logo

Question

Question: If \[\hat{a},\hat{b}\] and \(\hat{c}\) are mutually perpendicular unit vectors, then find the value ...

If a^,b^\hat{a},\hat{b} and c^\hat{c} are mutually perpendicular unit vectors, then find the value of 2a^+b^+c^|2\hat{a}+\hat{b}+\hat{c}|

Explanation

Solution

Now we are given that If a^,b^\hat{a},\hat{b} and c^\hat{c} are mutually perpendicular unit vectors a^,b^\hat{a},\hat{b} and c^\hat{c} are mutually perpendicular vectors and dot product of perpendicular vectors is equal to zero.
And the modulus of each vector is equal to 1. Then we will consider 2a^+b^+c^2|2\hat{a}+\hat{b}+\hat{c}{{|}^{2}}. We know that a^.a^=a^2\hat{a}.\hat{a}=|\hat{a}{{|}^{2}} . Hence using this property we get the value of 2a^+b^+c^2|2\hat{a}+\hat{b}+\hat{c}{{|}^{2}} in this we will substitute 0 and 1 as per the conditions we get from the fact that the vectors are perpendicular vectors and unit vectors. Hence once we find the value of 2a^+b^+c^2|2\hat{a}+\hat{b}+\hat{c}{{|}^{2}} we will take square root on both sides to get the value of 2a^+b^+c^|2\hat{a}+\hat{b}+\hat{c}|

Complete step-by-step answer:
Now we know that since a^,b^\hat{a},\hat{b} and c^\hat{c} are mutually perpendicular vectors and dot product of perpendicular vectors is equal to zero.
a^.b^=b^.c^=c^.a^=0..........(1)\hat{a}.\hat{b}=\hat{b}.\hat{c}=\hat{c}.\hat{a}=0..........(1)
And also since a^,b^\hat{a},\hat{b} and c^\hat{c} are unit vector we have
a^=b^=c^=1...........(2)|\hat{a}|=|\hat{b}|=|\hat{c}|=1...........(2)
Now let us consider 2a^+b^+c^2|2\hat{a}+\hat{b}+\hat{c}{{|}^{2}}
Now we know that a^.a^=a^2\hat{a}.\hat{a}=|\hat{a}{{|}^{2}} hence we get
2a^+b^+c^2=(2a^+b^+c^).(2a^+b^+c^)|2\hat{a}+\hat{b}+\hat{c}{{|}^{2}}=\left( 2\hat{a}+\hat{b}+\hat{c} \right).\left( 2\hat{a}+\hat{b}+\hat{c} \right)
Now we know that the dot product is distributive over addition which means a^.(b^+c^)=a^.b^+a^.c^\hat{a}.(\hat{b}+\hat{c})=\hat{a}.\hat{b}+\hat{a}.\hat{c} . Hence using this property we get
2a^+b^+c^2=4(a^.a^)+2(a^.b^.)+2(a^.c^)+2(b^.a^)+(b^.b^)+(b^.c^)+2(c^.a^)+2(c^.b^)+(c^.c^)|2\hat{a}+\hat{b}+\hat{c}{{|}^{2}}=4(\hat{a}.\hat{a})+2\left( \hat{a}.\hat{b}. \right)+2\left( \hat{a}.\hat{c} \right)+2\left( \hat{b}.\hat{a} \right)+(\hat{b}.\hat{b})+\left( \hat{b}.\hat{c} \right)+2\left( \hat{c}.\hat{a} \right)+2\left( \hat{c}.\hat{b} \right)+\left( \hat{c}.\hat{c} \right)
Now we know that a^.a^=a^2\hat{a}.\hat{a}=|\hat{a}{{|}^{2}}
Hence using this in the above equation we get
2a^+b^+c^2=4a^2+2(a^.b^.)+2(a^.c^)+2(b^.a^)+b^2+(b^.c^)+2(c^.a^)+2(c^.b^)+c^2|2\hat{a}+\hat{b}+\hat{c}{{|}^{2}}=4|\hat{a}{{|}^{2}}+2\left( \hat{a}.\hat{b}. \right)+2\left( \hat{a}.\hat{c} \right)+2\left( \hat{b}.\hat{a} \right)+|\hat{b}{{|}^{2}}+\left( \hat{b}.\hat{c} \right)+2\left( \hat{c}.\hat{a} \right)+2\left( \hat{c}.\hat{b} \right)+|\hat{c}{{|}^{2}}
Now substituting the values from equation (2) and equation (1) we get
2a^+b^+c^2=4(1)+2(0.)+2(0)+2(0)+(1)+(0)+2(0)+2(0)+(1)|2\hat{a}+\hat{b}+\hat{c}{{|}^{2}}=4(1)+2\left( 0. \right)+2\left( 0 \right)+2(0)+(1)+\left( 0 \right)+2\left( 0 \right)+2\left( 0 \right)+\left( 1 \right)
Adding the terms on RHS we get
2a^+b^+c^2=6|2\hat{a}+\hat{b}+\hat{c}{{|}^{2}}=6
Now let us take square root on both sides so that we get the value of 2a^+b^+c^|2\hat{a}+\hat{b}+\hat{c}| . Hence we get.
2a^+b^+c^=+6|2\hat{a}+\hat{b}+\hat{c}|=+\sqrt{6} or 2a^+b^+c^=6|2\hat{a}+\hat{b}+\hat{c}|=-\sqrt{6}
Now we know that modulus is always positive hence we will eliminate the case of negative answer
Hence we get the answer as 2a^+b^+c^=6|2\hat{a}+\hat{b}+\hat{c}|=\sqrt{6}

Note: Note dot product of two perpendicular vectors is 0 and not 1. Also we have a^.a^=a^2\hat{a}.\hat{a}=|\hat{a}{{|}^{2}} and not a^.a^=a^\hat{a}.\hat{a}=|\hat{a}|.