Question
Question: If \(h(a) = h(b),\) then \(\int_{a}^{b}{\lbrack f(g\lbrack h(x)\rbrack)\rbrack^{- 1}}f'(g\lbrack h(x...
If h(a)=h(b), then ∫ab[f(g[h(x)])]−1f′(g[h(x)])g′[h(x)]h′(x)dx is equal to
A
0
B
f(a)−f(b)
C
f[g(a)]−f[g(b)]
D
None
Answer
0
Explanation
Solution
Put f(g[h(x)])=t ⇒ f′(g[h(x)])g′[h(x)]h′(x)dx=dt
∴ ∫f(g[h(a)])f(g[h(b)])t−1dt=[log(t)]f(g[h(a)])f(g[h(b)])=0 [∵h(a)=h(b)]