Solveeit Logo

Question

Question: If \(h(a) = h(b),\) then \(\int_{a}^{b}{\lbrack f(g\lbrack h(x)\rbrack)\rbrack^{- 1}}f'(g\lbrack h(x...

If h(a)=h(b),h(a) = h(b), then ab[f(g[h(x)])]1f(g[h(x)])g[h(x)]h(x)dx\int_{a}^{b}{\lbrack f(g\lbrack h(x)\rbrack)\rbrack^{- 1}}f'(g\lbrack h(x)\rbrack)g'\lbrack h(x)\rbrack h'(x)dx is equal to

A

0

B

f(a)f(b)f(a) - f(b)

C

f[g(a)]f[g(b)]f\lbrack g(a)\rbrack - f\lbrack g(b)\rbrack

D

None

Answer

0

Explanation

Solution

Put f(g[h(x)])=tf(g\lbrack h(x)\rbrack) = tf(g[h(x)])g[h(x)]h(x)dx=dtf'(g\lbrack h(x)\rbrack)g'\lbrack h(x)\rbrack h'(x)dx = dt

f(g[h(a)])f(g[h(b)])t1dt=[log(t)]f(g[h(a)])f(g[h(b)])=0\int_{f(g\lbrack h(a)\rbrack)}^{f(g\lbrack h(b)\rbrack)}{t^{- 1}dt = \left\lbrack \log(t) \right\rbrack_{f(g\lbrack h(a)\rbrack)}^{f(g\lbrack h(b)\rbrack)}} = 0 [h(a)=h(b)]\lbrack\because h(a) = h(b)\rbrack