Solveeit Logo

Question

Mathematics Question on Sequence and series

If Hn=1+12+.....+1n,H_n = 1+\frac{1}{2} + ..... + \frac{1}{n}, then the value of Sn=1+32+53+.....+2n1nisS_n = 1+\frac{3}{2} + \frac{5}{3} + .....+\frac{2n-1}{n} is

A

Hn+2nH_n + 2n

B

n1+Hnn-1 + H_n

C

Hn2nH_n - 2n

D

2nHn2n - Hn

Answer

2nHn2n - Hn

Explanation

Solution

Given, Hn=1+12+...+1nH_n = 1 + \frac{1}{2} + ...+\frac{1}{n}
Also, Sn=1+32+53+...+2n1nS_n = 1 + \frac{3}{2} + \frac{5}{3} + ...+ \frac{2n-1}{n}
=1+(41)2+(61)3+...+2n1n= 1 + \frac{(4-1)}{2} + \frac{(6 - 1)}{3} + ...+\frac{2n-1}{n}
=1+212+213+...+21n= 1 + 2 - \frac{1}{2} + 2 - \frac{1}{3} + ...+ 2 - \frac{1}{n}
=1+2(n1)(12+13+...+1n)= 1 + 2(n-1) - (\frac{1}{2} + \frac{1}{3} + ...+ \frac{1}{n})
=1+2(n1)(Hn1)= 1 + 2(n-1) - (H_n - 1)
=2nHn= 2n - H_n