Solveeit Logo

Question

Mathematics Question on limits and derivatives

If h(x)=2+x22x2h\left(x\right)=\frac{2+x^{2}}{2-x^{2}}, h(1)=h'\left(1\right)=

A

22

B

44

C

66

D

88

Answer

88

Explanation

Solution

We have h(x)=2+x22x2h\left(x\right)=\frac{2+x^{2}}{2-x^{2}} h(x)=(2x2)(2x)(2+x2)(2x)(2x2)2\therefore h'\left(x\right)=\frac{\left(2-x^{2}\right)\left(2x\right)-\left(2+x^{2}\right)\left(-2x\right)}{\left(2-x^{2}\right)^{2}} =2x(2x2+2+x2)(2x2)2=\frac{2x\left(2-x^{2}+2+x^{2}\right)}{\left(2-x^{2}\right)^{2}} =8x(2x2)2=\frac{8x}{\left(2-x^{2}\right)^{2}} h(1)=81=8\therefore h'\left(1\right)=\frac{8}{1}=8.