Solveeit Logo

Question

Mathematics Question on Sequence and series

If H be the Harmonic mean between a and b, then the value of 1Ha+1Hb\frac{1}{H-a}+ \frac{1}{H-b} is

A

1a1b\frac{1}{a}-\frac{1}{b}

B

a - b

C

a + b

D

1a+1b\frac{1}{a}+\frac{1}{b}

Answer

1a+1b\frac{1}{a}+\frac{1}{b}

Explanation

Solution

H=2aba+bH= \frac{2ab}{a+b} 1Ha+1Hb=12aba+ba+12aba+bb \frac{1}{H-a}+\frac{1}{H-b}= \frac{1}{\frac{2ab}{a+b}-a} + \frac{1}{\frac{2ab}{a+b}-b} =a+b2aba2ab+a+b2ababb2= \frac{a+b}{2ab-a^{2}-ab}+\frac{a+b}{2ab-ab-b^{2}} =a+baba2+a+babb2= \frac{a+b}{ab-a^{2}}+ \frac{a+b}{ab-b^{2}} =a+b[1a(bc)+2b(ab)]= a+b\left[\frac{1}{a\left(b-c\right)} + \frac{2}{b\left(a-b\right)}\right] =(a+b)[abab(ab)]= \left(a+b\right)\left[\frac{a-b}{ab\left(a-b\right)}\right] =a+bab=1a+1b = \frac{a+b}{ab} = \frac{1}{a}+\frac{1}{b}