Solveeit Logo

Question

Question: If g'(x)=f(x), then $\int_{a}^{b} f(x)dx = g(b)-g(a)$. The value of the integral $\int_{1}^{\infty}...

If g'(x)=f(x), then abf(x)dx=g(b)g(a)\int_{a}^{b} f(x)dx = g(b)-g(a).

The value of the integral 1(lnxx)2018dx\int_{1}^{\infty} (\frac{ln x}{x})^{2018} dx is:

A

2018!20172018\frac{2018!}{2017^{2018}}

B

2017!20182018\frac{2017!}{2018^{2018}}

C

2017!20172019\frac{2017!}{2017^{2019}}

D

2018!20172019\frac{2018!}{2017^{2019}}

Answer

2018!20172019\frac{2018!}{2017^{2019}}

Explanation

Solution

Let the integral be II. We are asked to evaluate I=1(lnxx)2018dxI = \int_{1}^{\infty} \left(\frac{\ln x}{x}\right)^{2018} dx. Let n=2018n = 2018. The integral is I=1(lnxx)ndxI = \int_{1}^{\infty} \left(\frac{\ln x}{x}\right)^n dx. We use the substitution u=lnxu = \ln x. This implies x=eux = e^u and dx=eududx = e^u du. When x=1x=1, u=ln1=0u = \ln 1 = 0. As xx \to \infty, uu \to \infty. Substituting these into the integral, we get: I=0(ueu)neudu=0unenueudu=0une(n1)uduI = \int_{0}^{\infty} \left(\frac{u}{e^u}\right)^n e^u du = \int_{0}^{\infty} \frac{u^n}{e^{nu}} e^u du = \int_{0}^{\infty} u^n e^{-(n-1)u} du.

Now, let v=(n1)uv = (n-1)u. This implies u=vn1u = \frac{v}{n-1} and du=1n1dvdu = \frac{1}{n-1} dv. The limits of integration remain 00 to \infty. Substituting these into the integral: I=0(vn1)nev1n1dvI = \int_{0}^{\infty} \left(\frac{v}{n-1}\right)^n e^{-v} \frac{1}{n-1} dv I=0vn(n1)nev1n1dvI = \int_{0}^{\infty} \frac{v^n}{(n-1)^n} e^{-v} \frac{1}{n-1} dv I=1(n1)n(n1)0vnevdvI = \frac{1}{(n-1)^n (n-1)} \int_{0}^{\infty} v^n e^{-v} dv I=1(n1)n+10vnevdvI = \frac{1}{(n-1)^{n+1}} \int_{0}^{\infty} v^n e^{-v} dv.

The integral 0vnevdv\int_{0}^{\infty} v^n e^{-v} dv is the Gamma function Γ(n+1)\Gamma(n+1). For a positive integer nn, Γ(n+1)=n!\Gamma(n+1) = n!. Therefore, I=1(n1)n+1n!=n!(n1)n+1I = \frac{1}{(n-1)^{n+1}} \cdot n! = \frac{n!}{(n-1)^{n+1}}.

In this problem, n=2018n = 2018. Substituting n=2018n=2018: I=2018!(20181)2018+1=2018!20172019I = \frac{2018!}{(2018-1)^{2018+1}} = \frac{2018!}{2017^{2019}}.