Question
Question: If \(g(x) = x^{2} + x - 2\) and \(\frac{1}{2}(gof)(x) = 2x^{2} - 5x + 2,\) then \(f^{- 1}(x)\) is eq...
If g(x)=x2+x−2 and 21(gof)(x)=2x2−5x+2, then f−1(x) is equal to
A
2x−3
B
2x+3
C
x,f(x)=0
D
[y]
Answer
2x−3
Explanation
Solution
g(x)=x2+x−2⇒(gof)(x)=g[f(x)]=[f(x)]2+f(x)−2
Given, 21(gof)(x)=2x2−5x+2
∴ 21[f(x)]2+21f(x)−1=2x2−5x+2
⇒[f(x)]2+f(x)=4x2−10x+6
⇒ f(x)[f(x)+1]=(2x−3)[(2x−3)+1]⇒ f:R→R.