Solveeit Logo

Question

Question: If \(g(x) = x^{2} + x - 2\) and \(\frac{1}{2}(gof)(x) = 2x^{2} - 5x + 2,\) then \(f^{- 1}(x)\) is eq...

If g(x)=x2+x2g(x) = x^{2} + x - 2 and 12(gof)(x)=2x25x+2,\frac{1}{2}(gof)(x) = 2x^{2} - 5x + 2, then f1(x)f^{- 1}(x) is equal to

A

2x32x - 3

B

2x+32x + 3

C

x,f(x)=0x,f(x) = 0

D

[y]\lbrack y\rbrack

Answer

2x32x - 3

Explanation

Solution

g(x)=x2+x2(gof)(x)=g[f(x)]=[f(x)]2+f(x)2g(x) = x^{2} + x - 2 \Rightarrow (gof)(x) = g\lbrack f(x)\rbrack = \lbrack f(x)\rbrack^{2} + f(x) - 2

Given, 12(gof)(x)=2x25x+2\frac{1}{2}(gof)(x) = 2x^{2} - 5x + 2

\therefore 12[f(x)]2+12f(x)1=2x25x+2\frac{1}{2}\lbrack f(x)\rbrack^{2} + \frac{1}{2}f(x) - 1 = 2x^{2} - 5x + 2

[f(x)]2+f(x)=4x210x+6\Rightarrow \lbrack f(x)\rbrack^{2} + f(x) = 4x^{2} - 10x + 6

\Rightarrow f(x)[f(x)+1]=(2x3)[(2x3)+1]f(x)\lbrack f(x) + 1\rbrack = (2x - 3)\lbrack(2x - 3) + 1\rbrack \Rightarrow f:RRf:R \rightarrow R.