Solveeit Logo

Question

Question: If $g(x) = x^2 + x - 1$ and $(gof)(x) = 4x^2 - 10x + 5$, then $f(\frac{5}{4})$ is equal to:...

If g(x)=x2+x1g(x) = x^2 + x - 1 and (gof)(x)=4x210x+5(gof)(x) = 4x^2 - 10x + 5, then f(54)f(\frac{5}{4}) is equal to:

A

32\frac{3}{2}

B

32-\frac{3}{2}

C

12\frac{1}{2}

D

12-\frac{1}{2}

Answer

The correct answer is 12-\frac{1}{2}.

Explanation

Solution

We are given g(x)=x2+x1g(x) = x^2 + x - 1 and (gf)(x)=4x210x+5(g \circ f)(x) = 4x^2 - 10x + 5. We need to find f(54)f(\frac{5}{4}).

Since (gf)(x)=g(f(x))(g \circ f)(x) = g(f(x)), we have g(f(x))=(f(x))2+f(x)1g(f(x)) = (f(x))^2 + f(x) - 1. Thus, (f(x))2+f(x)1=4x210x+5(f(x))^2 + f(x) - 1 = 4x^2 - 10x + 5.

Substituting x=54x = \frac{5}{4}, we get (f(54))2+f(54)1=4(54)210(54)+5(f(\frac{5}{4}))^2 + f(\frac{5}{4}) - 1 = 4(\frac{5}{4})^2 - 10(\frac{5}{4}) + 5.

Simplifying the right side: 4(2516)504+5=254504+204=544(\frac{25}{16}) - \frac{50}{4} + 5 = \frac{25}{4} - \frac{50}{4} + \frac{20}{4} = \frac{-5}{4}.

Let k=f(54)k = f(\frac{5}{4}). Then k2+k1=54k^2 + k - 1 = -\frac{5}{4}, which gives k2+k+14=0k^2 + k + \frac{1}{4} = 0.

This factors as (k+12)2=0(k + \frac{1}{2})^2 = 0, so k=12k = -\frac{1}{2}.

Therefore, f(54)=12f(\frac{5}{4}) = -\frac{1}{2}.