Question
Question: If g(x) = \(\int_{0}^{x}{\cos^{4}tdt}\), then g(x + p) equals-...
If g(x) = ∫0xcos4tdt, then g(x + p) equals-
A
g(x) + g(p)
B
g(x) – g(p)
C
g(x) . g(p)
D
0
Answer
g(x) + g(p)
Explanation
Solution
g(x + p) = ∫0x+πcos4(t)dt
= ∫0xcos4(t)dt+ ∫xx+πcos4tdt ... (3)
= ∫0xcos4tdt+ ∫0πcos4tdt (Q cos4 t is periodic function)
= g(x) + g(p)